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Why is there so
much excitement
about neural net-
works today, and
how is this related to
research in AI? Much
has been said, in the
popular press, as
though these were
conflicting activities.
This seems exceed-
ingly strange to me
because both are
parts of the same
enterprise. What
caused this miscon-
ception?

The symbol-orient-
ed community in AI

has brought this rift
upon itself by sup-
porting models in
research that are far
too rigid and special-
ized. This focus on
well-defined prob-
lems produced many
successful applications, no matter that the
underlying systems were too inflexible to
function well outside the domains for which
they were designed. (It seems to me that this
occurred because of the researchers’ excessive
concern with logical consistency and prov-
ability. Ultimately, this concern would be a
proper one but not in the subject’s current
state of immaturity.) Thus, contemporary
symbolic AI systems are now too constrained
to be able to deal with exceptions to rules or
to exploit fuzzy, approximate, or heuristic
fragments of knowledge. Partly in reaction to
this constraint, the connectionist movement
initially tried to develop more flexible sys-
tems but soon came to be imprisoned in its
own peculiar ideology—trying to build learn-
ing systems endowed with as little architec-
tural structure as possible, hoping to create
machines that could serve all masters equally
well. The trouble with this attempt is that
even a seemingly neutral architecture still
embodies an implicit assumption about
which things are presumed to be similar.

The field called AI includes many different
aspirations. Some researchers simply want
machines to do the various sorts of things
that people call intelligent. Others hope to

understand what
enables people to do
such things. Still
other researchers
want to simplify
programming. Why
can’t we build, once
and for all, machines
that grow and
improve themselves
by learning from
experience? Why
can’t we simply
explain what we
want, and then let
our machines do
experiments or read
some books or go to
school—the sorts of
things that people
do. Our machines
today do no such
things: Connection-
ist networks learn a
bit but show few
signs of becoming
smart; symbolic sys-

tems are shrewd from the start but don’t yet
show any common sense. How strange that
our most advanced systems can compete with
human specialists yet are unable to do many
things that seem easy to children. I suggest
that this stems from the nature of what 
we call specialties—because the very act of
naming a specialty amounts to celebrating
the discovery of some model of some aspect
of reality, which is useful despite being isolat-
ed from most of our other concerns. These
models have rules that reliably work—as long
as we stay in their special domains. But when
we return to the commonsense world, we
rarely find rules that precisely apply. Instead,
we must know how to adapt each fragment
of knowledge to particular contexts and cir-
cumstances, and we must expect to need
more and different kinds of knowledge as our
concerns broaden. Inside such simple “toy”
domains, a rule might seem to be general, but
whenever we broaden these domains, we find
more and more exceptions, and the early
advantage of context-free rules then mutates
into strong limitations.

AI research must now move from its tradi-
tional focus on particular schemes. There is
no one best way to represent knowledge or to

…the time
has come 
to build 
systems out 
of diverse
components…
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Engineering and scientific education condition
us to expect everything, including intelligence, to
have a simple, compact explanation. Accordingly,
when people new to AI ask “What’s AI all about,”
they seem to expect an answer that defines AI in
terms of a few basic mathematical laws.

Today, some researchers who seek a simple,
compact explanation hope that systems modeled
on neural nets or some other connectionist idea
will quickly overtake more traditional systems
based on symbol manipulation. Others believe
that symbol manipulation, with a history that
goes back millennia, remains the only viable
approach.

Marvin Minsky subscribes to neither of these
extremist views. Instead, he argues that AI must
use many approaches. AI is not like circuit theory
and electromagnetism. There is nothing wonder-
fully unifying like Kirchhoff’s laws are to circuit
theory or Maxwell’s equations are to electromag-
netism. Instead of looking for a “right way,” the
time has come to build systems out of diverse
components, some connectionist and some sym-
bolic, each with its own diverse justification.

—Patrick Winston
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heuristic programs based on top-down analy-
sis have found many successful applications
in technical, specialized areas. This progress is
largely the result of the maturation of many
techniques for representing knowledge. How-
ever, the same techniques have seen less suc-
cess when applied to commonsense problem
solving. Why can we build robots that com-
pete with highly trained workers to assemble
intricate machinery in factories but not robots
that can help with ordinary housework? It is
because the conditions in factories are con-
strained, and the objects and activities of
everyday life are too endlessly varied to be
described by precise, logical definitions and
deductions. Commonsense reality is too dis-
orderly to represent in terms of universally
valid axioms. To deal with such variety and
novelty, we need more flexible styles of
thought, such as those we see in human com-
monsense reasoning, which is based more on
analogies and approximations than on pre-
cise formal procedures. Nonetheless, top-
down procedures have important advantages
in being able to perform efficient, systematic
search procedures, manipulate and rearrange
the elements of complex situations, and
supervise the management of intricately
interacting subgoals—all functions that seem
beyond the capabilities of connectionist sys-
tems with weak architectures.

Shortsighted critics have always complained
that progress in top-down symbolic AI research
is slowing. In one way, this slowing is natural:
In the early phases of any field, it becomes
ever harder to make important new advances
as we put the easier problems behind us; in
addition, new workers must face a squared
challenge because there is so much more to
learn. However, the slowdown of progress in
symbolic AI is not just a matter of laziness.
Those top-down systems are inherently poor
at solving problems that involve large num-

solve problems, and the limitations of current
machine intelligence largely stem from seek-
ing unified theories or trying to repair the
deficiencies of theoretically neat but concep-
tually impoverished ideological positions.
Our purely numeric connectionist networks
are inherently deficient in abilities to reason
well; our purely symbolic logical systems are
inherently deficient in abilities to represent
the all-important heuristic connections
between things—the uncertain, approximate,
and analogical links that we need for making
new hypotheses. The versatility that we need
can be found only in larger-scale architec-
tures that can exploit and manage the advan-
tages of several types of representations at the
same time. Then, each can be used to over-
come the deficiencies of the others. To
accomplish this task, each formally neat type
of knowledge representation or inference
must be complemented with some scruffier
kind of machinery that can embody the
heuristic connections between the knowledge
itself and what we hope to do with it.

Top Down versus Bottom Up
Although different workers have diverse goals,
all AI researchers seek to make machines that
solve problems. One popular way to pursue
this quest is to start with a top-down strategy:
Begin at the level of commonsense psycholo-
gy, and try to imagine processes that could
play a certain game, solve a certain kind of
puzzle, or recognize a certain kind of object.
If this task can’t be done in a single step, then
break things down into simpler parts until
you can actually embody them in hardware
or software.

This basically reductionist technique is typ-
ical of the approach to AI called heuristic pro-
gramming. These techniques have developed
productively for several decades, and today,
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bers of weaker kinds of interactions such as
occur in many areas of pattern recognition
and knowledge retrieval. Hence, there has
been a mounting clamor for finding another,
new, more flexible approach, which is one
reason for the recent popular turn toward
connectionist models.

The bottom-up approach goes the opposite
way. We begin with simpler elements—they
might be small computer programs, elemen-
tary logical principles, or simplified models of
what brain cells do—and then move upward
in complexity by finding ways to intercon-
nect these units to produce larger-scale phe-
nomena. The currently popular form of this,
the connectionist neural network approach,
developed more sporadically than heuristic
programming. This development was sporadic
in part because heuristic programming devel-
oped so rapidly in the 1960s that connection-
ist networks were swiftly outclassed. Also, the
networks needed computation and memory
resources that were too prodigious for that
period. Now that faster computers are avail-
able, bottom-up connectionist research has
shown considerable promise in mimicking
some of what we admire in the behavior of
lower animals, particularly in the areas of pat-
tern recognition, automatic optimization,
clustering, and knowledge retrieval. However,
their performances have been far weaker in
precisely the areas in which symbolic systems
have successfully mimicked much of what we
admire in high-level human thinking, for
example, in goal-based reasoning, parsing,
and causal analysis. These weakly structured
connectionist networks cannot deal with the
sorts of tree search explorations and complex,
composite knowledge structures required for
parsing, recursion, complex scene analysis, or
other sorts of problems that involve function-
al parallelism. It is an amusing paradox that
connectionists frequently boast about the
massive parallelism of their computations, yet
the homogeneity and interconnectedness of
these structures make them virtually unable
to do more than one thing at a time—at least,
at levels above that of their basic associative
function. This is essentially because they lack
the architecture needed to maintain adequate
short-term memories.

Thus, the current systems of both types show
serious limitations. The top-down systems are
handicapped by inflexible mechanisms for
dealing with very numerous, albeit very weak,
interactions, while the bottom-up systems are
crippled by inflexible architectures and orga-
nizational limitations. Neither type of system
has been developed to be able to exploit mul-
tiple, diverse varieties of knowledge.

Which approach is best to pursue? This
question itself is simply wrong. Each has
virtues and deficiencies, and we need inte-
grated systems that can exploit the advantages
of both. In favor of the top-down side, AI

research has told us a little—but only a little—
about how to solve problems by using meth-
ods that resemble reasoning. If we under-
stood more about such processes, perhaps we
could more easily work down toward finding
out how brain cells do such things. In favor
of the bottom-up approach, the brain sci-
ences have told us something—but again
only a little—about the workings of brain
cells and their connections. More research in
this area might help us discover how the
activities of brain cell networks support our
higher-level processes. However, right now
we’re caught in the middle; neither purely
connectionist nor purely symbolic systems
seem able to support the sorts of intellectual
performances we take for granted even in
young children. This article aims at under-
standing why both types of AI systems have
developed to become so inflexible. I’ll argue
that the solution lies somewhere between
these two extremes, and our problem will be
to find out how to build a suitable bridge. 
We already have plenty of ideas at either
extreme. On the connectionist side, we can
extend our efforts to design neural networks
that can learn various ways to represent
knowledge. On the symbolic side, we can
extend our research on knowledge represen-
tations to the designing of systems that can
more effectively exploit the knowledge thus
represented. However, above all, we currently
need more research on how to combine both
types of ideas.

Representation and Retrieval:
Structure and Function

In order that a machine may learn, it must
represent what it will learn. The knowledge
must be embodied in some form of mecha-
nism, data structure, or representation. AI

researchers have devised many ways to
embody this knowledge, for example, in the
forms of rule-based systems, frames with
default assignments, predicate calculus, pro-
cedural representations, associative databases,
semantic networks, object-oriented data-
structures, conceptual dependency, action
scripts, neural networks, and natural
language.

In the 1960s and 1970s, students frequent-
ly asked, “Which kind of representation is
best,” and I usually replied that we’d need
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organizational systems that can support a
large enough diversity of different schemes
yet enable them to work together to exploit
one another’s abilities.

To solve typical real-world commonsense
problems, a mind must have at least several
different kinds of knowledge. First, we need
to represent goals: What is the problem to be
solved. Then, the system must also possess
adequate knowledge about the domain or
context in which this problem occurs. Finally,
the system must know what kinds of reason-
ing are applicable in this area. Superimposed
on all this knowledge, our systems must have
management schemes that can operate differ-
ent representations and procedures in paral-
lel, so that when any particular method
breaks down or gets stuck, the system can
quickly shift to analogous operations in other
realms that might be able to continue the
work. For example, when you hear a natural
language expression such as “Mary gave Jack
the book,” you will produce, albeit uncon-
sciously, many different kinds of thoughts
(Minsky [1987], section 29.2), that is, mental
activities in such different realms as a visual
representation of the scene; postural and tac-
tile representations of the experience; a script
sequence for a typical act of giving; represen-
tations of the participants’ roles; representa-
tions of their social motivations; default
assumptions about Jack, Mary, and the book;
and other assumptions about past and future
expectations.

How could a brain possibly coordinate the
use of such different kinds of processes and
representations? The conjecture is that our
brains construct and maintain them in differ-
ent brain agencies. (The corresponding neural
structures need not, of course, be entirely sep-
arate in their spatial extents inside the brain.)
However, it is not enough to maintain sepa-
rate processes inside separate agencies; we
also need additional mechanisms to enable
each of them to support the activities of the
others or, at least, to provide alternative oper-
ations in case of failures. Chapters 19 through
23 of The Society of Mind (Minsky 1987)
sketch some ideas about how the representa-
tions in different agencies could be coordinat-
ed. These sections introduce the concepts of
the polyneme, a hypothetical neuronal mecha-
nism for activating corresponding slots in dif-
ferent representations; the microneme, a
context-representing mechanism that similar-
ly biases all the agencies to activate knowl-
edge related to the current situation and goal;
and the paranome, yet another mechanism
that can simultaneously apply corresponding
processes or operations to the short-term

more research before answering. But now I
would give a different reply: “To solve really
hard problems, we’ll have to use several dif-
ferent representations.” This is because each
particular kind of data structure has its own
virtues and deficiencies, and none by itself
seems adequate for all the different functions
involved with what we call common sense.
Each has domains of competence and effi-
ciency, so that one might work where anoth-
er fails. Furthermore, if we only rely on any
single, unified scheme, then we’ll have no
way to recover from failure. As suggested in
section 6.9 of The Society of Mind (Minsky
1987), “The secret of what something means
lies in how it connects to other things we
know. That’s why it’s almost always wrong to
seek the real meaning of anything. A thing
with just one meaning has scarcely any
meaning at all.” 

To get around these limitations, we must
develop systems that combine the expressive-
ness and procedural versatility of symbolic
systems with the fuzziness and adaptiveness
of connectionist representations. Why has
there been so little work on synthesizing
these techniques? I suspect that it is because
both of these AI communities suffer from a
common cultural-philosophical disposition:
They would like to explain intelligence in the
image of what was successful in physics—by
minimizing the amount and variety of its
assumptions. But this seems to be a wrong
ideal. We should take our cue from biology
rather than physics because what we call
thinking does not directly emerge from a few
fundamental principles of wave-function
symmetry and exclusion rules. Mental activi-
ties are not the sort of unitary or elementary
phenomenon that can be described by a few
mathematical operations on logical axioms.
Instead, the functions performed by the brain
are the products of the work of thousands of
different, specialized subsystems, the intricate
product of hundreds of millions of years of
biological evolution. We cannot hope to
understand such an organization by emulat-
ing the techniques of those particle physicists
who search for the simplest possible unifying
conceptions. Constructing a mind is simply a
different kind of problem—how to synthesize
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memory agents—called pronomes—of these
various agencies.

It is impossible to briefly summarize how
all these mechanisms are imagined to work,
but section 29.3 of The Society of Mind
(Minsky 1987) gives some of the flavor of the
theory. What controls those paranomes? I
suspect that in human minds, this control
comes from the mutual exploitation of a
long-range planning agency (whose scripts
are influenced by various strong goals and
ideals; this agency resembles the Freudian
superego and is based on early imprinting),
another supervisory agency capable of using
semiformal inferences and natural language
reformulations, and a Freudian-like censor-
ship agency that incorporates massive records
of previous failures of various sorts.

Relevance and Similarity
Problem solvers must find relevant data. How
does the human mind retrieve what it needs
from among so many millions of knowledge
items? Different AI systems have attempted to
use a variety of different methods for this.
Some assign keywords, attributes, or descrip-
tors to each item and then locate data by fea-
ture-matching or using more sophisticated
associative database methods. Others use
graph matching or analogical case-based
adaptation. Still others try to find relevant
information by threading their way through
systematic, usually hierarchical classifications
of knowledge—sometimes called ontologies. To
me, all such ideas seem deficient because it is
not enough to classify items of information
simply in terms of the features or structures of
the items themselves: We rarely use a repre-
sentation in an intentional vacuum, but we
always have goals—and two objects might
seem similar for one purpose but different for
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another purpose. Consequently, we must also
account for the functional aspects of what we
know, and therefore, we must classify things
(and ideas) according to what they can be
used for or which goals they can help us
achieve. Two armchairs of identical shape
might seem equally comfortable as objects for
sitting in, but these same chairs might seem
very different for other purposes, for example,
if they differ much in weight, fragility, cost,
or appearance. The further a feature or differ-
ence lies from the surface of the chosen repre-
sentation, the harder it will be to respond to,
exploit, or adapt to, which is why the choice
of representation is so important. In each
functional context, we need to represent par-
ticularly well the heuristic connections
between each object’s internal features and
relationships and the possible functions of
that object. That is, we must be able to easily
relate the structural features of each object’s
representation to how this object might
behave in regard to achieving our current
goals (see sections 12.4, 12.5, 12.12, and
12.13, Minsky [1987]).

New problems, by definition, are different
from those we have already encountered; so,
we cannot always depend on using records of
past experience. However, to do better than
random search, we have to exploit what was
learned from the past, no matter that it might
not perfectly match. Which records should
we retrieve as likely to be the most relevant?

Explanations of relevance in traditional
theories abound with synonyms for nearness
and similarity. If a certain item gives bad
results, it makes sense to try something differ-
ent. However, when something we try turns
out to be good, then a similar one might be
better. We see this idea in myriad forms, and
whenever we solve problems, we find our-
selves using metrical metaphors: We’re “get-

Figures 2A and 2B.  Armchair



contend that it is now time to move to anoth-
er stage of research: Although each such con-
cept or method might have merit in certain
domains, none of them seem powerful
enough alone to make our machines more
intelligent. It is time to stop arguing over
which type of pattern-classification technique
is best because that depends on our context
and goal. Instead, we should work at a higher
level of organization and discover how to
build managerial systems to exploit the dif-
ferent virtues and evade the different limita-
tions of each of these ways of comparing
things. Different types of problems and repre-
sentations may require different concepts of
similarity. Within each realm of discourse,
some representation will make certain prob-
lems and concepts appear more closely relat-
ed than others. To make matters worse, even
within the same problem domain, we might
need different notions of similarity for descrip-
tions of problems and goals, descriptions of
knowledge about the subject domain, and
descriptions of procedures to be used.

For small domains, we can try to apply all
our reasoning methods to all our knowledge
and test for satisfactory solutions. However,
this approach becomes impractical when the
search becomes too huge—in both symbolic
and connectionist systems. To constrain the
extent of mindless search, we must incorporate
additional kinds of knowledge, embodying
expertise about problem solving itself and,
particularly, about managing the resources that
might be available. The spatial metaphor helps
us think about such issues by providing us
with a superficial unification: If we envision
problem solving as searching for solutions in
a spacelike realm, then it is tempting to analo-
gize between the ideas of similarity and near-
ness, to think about similar things as being in
some sense near or close to one another.

But near in what sense? To a mathemati-
cian, the most obvious idea would be to
imagine the objects under comparison to be
like points in some abstract space; then each
representation of this space would induce (or
reflect) some sort of topologylike structure or
relationship among the possible objects being
represented. Thus, the languages of many sci-
ences, not merely those of AI and psychology,
are replete with attempts to portray families
of concepts in terms of various sorts of spaces
equipped with various measures of similarity.
If, for example, you represent things in terms
of (allegedly independent) properties, then it
seems natural to try to assign magnitudes to
each and then to sum the squares of their dif-
ferences—in effect, representing these objects
as vectors in Euclidean space. This approach

ting close” or “on the right track,” using words
that express proximity. But what do we mean
by “close” or “near?” Decades of research on
different forms of this question have produced
theories and procedures for use in signal pro-
cessing, pattern recognition, induction, classi-
fication, clustering, generalization, and so on,
and each of these methods has been found
useful for certain applications but ineffective
for others. Recent connectionist research has
considerably enlarged our resources in these
areas. Each method has its advocates, but I
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Figure 3.  Functional similiarity

Figure 4.  “Heureka!”



further encourages us to formulate the func-
tion of knowledge in terms of helping us to
decide “which way to go.” This method is often
usefully translated into the popular metaphor
of hill climbing because if we can impose a
suitable metric structure on this space, we
might be able to devise iterative ways to find
solutions by analogy with the method of hill
climbing or gradient ascent; that is, when any
experiment seems more or less successful
than another, then we exploit this metrical
structure to help us make the next move in
the proper direction. (Later, I emphasize that
having a sense of direction entails a little
more than a sense of proximity: It is not
enough just to know metrical distances; we
must also respond to other kinds of heuristic
differences, and these differences might be
difficult to detect.)

Whenever we design or select a particular
representation, this particular choice will bias
our dispositions about which objects to con-
sider more or less similar to us (or to the pro-
grams we apply to them) and, thus, will affect
how we apply our knowledge to achieve goals
and solve problems. Once we understand the
effects of such commitments, we will be better
prepared to select and modify these represen-
tations to produce more heuristically useful
distinctions and confusions. Thus, let us now
examine, from this point of view, some of the
representations that have become popular in
the AI field.

Heuristic Connections of 
Pure Logic

Why have logic-based formalisms been so
widely used in AI research? I see two motives
for selecting this type of representation. One
virtue of logic is clarity, its lack of ambiguity.
Another advantage is the preexistence of
many technical mathematical theories about
logic. But logic also has its disadvantages.
Logical generalizations only apply to their lit-
eral lexical instances, and logical implications
only apply to expressions that precisely instan-
tiate their antecedent conditions. No excep-
tions are allowed, no matter how closely they
match. This approach permits you to use no
near misses, no suggestive clues, no compro-
mises, no analogies, and no metaphors. To
shackle yourself so inflexibly is to shoot your
own mind in the foot—if you know what I
mean.

These limitations of logic begin at the foun-
dation with the basic connectives and quanti-
fiers. The trouble is that worldly statements of
the form “For all x, P(x)” are never beyond

suspicion. To be sure, such a statement can
indeed be universally valid inside a mathe-
matical realm; however, this validity is
because such realms are themselves based on
expressions of this kind. The use of such for-
malisms in AI has led most researchers to seek
universal validity, to the virtual exclusion of
practicality or interest, as though nothing
would do except certainty. Now, this approach
is acceptable in mathematics (wherein we
ourselves define the worlds in which we solve
problems), but when it comes to reality, there
is little advantage in demanding inferential
perfection when there is no guarantee that
even our assumptions will always be correct.
Logic theorists seem to have forgotten that
any expression in actual life—that is, in a
world that we find but don’t make—such as
(x)(Px) must be seen as only a convenient
abbreviation for something more like the fol-
lowing: “For any thing x being considered in
the current context, the assertion P{x} is likely
to be useful for achieving goals like G, provid-
ed that we apply it in conjunction with other
heuristically appropriate inference methods.”
In other words, we cannot ask our problem-
solving systems to be absolutely perfect or
even consistent; we can only hope that they
will grow increasingly better than blind
search at generating, justifying, supporting,
rejecting, modifying, and developing evi-
dence for new hypotheses.

It has become particularly popular in AI

logic programming to restrict the representa-
tion to expressions written in first-order pred-
icate calculus. This practice, which is so
pervasive that most students engaged in it
don’t even know what “first order” means
here, facilitates the use of certain types of
inference but at a high price: The predicates
of such expressions are prohibited from refer-
ring in certain ways to one another. This
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as close to the representation’s surface struc-
ture. However, such a discovery is too much
to expect in general, so it is usually necessary
to gauge the similarity of two expressions by
using more complex assessments based, for
example, on the number of set-inclusion
levels between them, or on the number of
available operations required to transform
one into the other, or on the basis of the par-
tial ordering suggested by their lattice of
common generalizations and instances. This
means that making good similarity judg-
ments might itself require the use of other
heuristic kinds of knowledge, until eventual-
ly—that is, when our problems grow hard
enough—we are forced to resort to tech-
niques that exploit knowledge that is not so
transparently expressed in any such “mathe-
matically elegant” formulation.

Indeed, we can think about much of AI

research in terms of a tension between solv-
ing problems by searching for solutions
inside a compact and well-defined problem
space (which is feasible only for prototypes)
versus using external systems (that exploit
larger amounts of heuristic knowledge) to
reduce the complexity of that inner search.
Compound systems of this sort need retrieval
machinery that can select and extract knowl-
edge that is relevant to the problem at hand.
Although it is not especially hard to write
such programs, it cannot be done in first-
order systems. In my view, this can best be
achieved in systems that allow us to simulta-
neously use object-oriented structure-based
descriptions and goal-oriented functional
descriptions.

How can we make logic more expressive
given that each fundamental quantifier and
connective is defined so narrowly from the
start? This deficiency could well be beyond
repair, and the most satisfactory replacement
might be some sort of object-oriented frame-
based language. After all, once we leave the
domain of abstract mathematics and free our-
selves from these rigid notations, we can see
that some virtues of logiclike reasoning might
remain, for example, in the sorts of deductive
chaining we used and the kinds of substitu-
tion procedures we applied to these expres-
sions. The spirit of some of these formal
techniques can then be approximated by
other, less formal techniques of making
chains (see chapter 18, Minsky [1987]). For
example, the mechanisms of defaults and
frame arrays could be used to approximate
the formal effects of instantiating generaliza-
tions. When we use heuristic chaining, of
course, we cannot assume absolute validity of
the result; so, after each reasoning step, we

restriction prevents the representation of
metaknowledge, rendering these systems
incapable, for example, of describing what
the knowledge that they contain can be used
for. In effect, it precludes the use of function-
al descriptions. We need to develop systems
for logic that can reason about their own
knowledge and make heuristic adaptations
and interpretations of it by using knowledge
about this knowledge; however, the afore-
mentioned limitations of expressiveness
make logic unsuitable for such purposes.

Furthermore, it must be obvious that to
apply our knowledge to commonsense prob-
lems, we need to be able to recognize which
pairs of expressions are similar in whatever
heuristic sense may be appropriate. But this
seems too technically hard to do—at least for
the most commonly used logical formalisms
—namely, expressions in which absolute
quantifiers range over stringlike normal forms.
For example, to use the popular method of
resolution theorem proving, one usually ends
up using expressions that consist of logical
disjunctions of separate, almost meaningless
conjunctions. Consequently, the natural
topology of any such representation will
almost surely be heuristically irrelevant to
any real-life problem space. Consider how
dissimilar these three expressions seem when
written in conjunctive form:

A ∨ B ∨ C ∨ D  ,  
AB ∨ AC ∨ AD ∨ BC ∨ BD ∨ CD  , 

and   
ABC ∨ ABD ∨ ACD ∨ BCD  .
The simplest way to assess the distances or

differences between expressions is to compare
such superficial factors as the numbers of
terms or subexpressions they have in common.
Any such assessment would seem meaning-
less for expressions such as these. In most sit-
uations, however, it would almost surely be
useful to recognize that these expressions are
symmetric in their arguments and, hence,
will clearly seem more similar if we rerepre-
sent them—for example, by using Sn to mean
n of S’s arguments have truth value T—so
that they can then be written in the form S1,
S2 , and S3. Even in mathematics itself, we
consider it a great discovery to find a new
representation for which the most natural-
seeming heuristic connection can be recognized
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rather than obstacles…



might have to look for more evidence. If we
notice exceptions and disparities, then later
we must return to each or else remember
them as assumptions or problems to be justi-
fied or settled at some later time, all things
that humans so often do.

Heuristic Connections of 
Rule-Based Systems

Although logical representations have been
used in research, rule-based representations
have been more successful in applications. In
these systems, each fragment of knowledge is
represented by an if-then rule, so that when-
ever a description of the current problem situ-
ation precisely matches the rule’s antecedent
if condition, the system performs the action
described by this rule’s then consequent.
What if no antecedent condition applies? The
answer is simple: The programmer adds
another rule. It is this seeming modularity
that made rule-based systems so attractive.
You don’t have to write complicated programs.
Instead, whenever the system fails to perform
or does something wrong, you simply add
another rule. This approach usually works
well at first, but whenever we try to move
beyond the realm of toy problems and start to
accumulate more and more rules, we usually
get into trouble because each added rule is
increasingly likely to interact in unexpected
ways with the others. Then, what should we
ask the program to do when no antecedent
fits perfectly? We can equip the program to
select the rule whose antecedent most closely
describes the situation; again, we’re back to
“similar.” To make any real-world application
program resourceful, we must supplement its
formal reasoning facilities with matching
facilities that are heuristically appropriate for
the problem domain it is working in.

What if several rules match equally well? Of
course, we could choose the first on the list,
choose one at random, or use some other
superficial scheme—but why be so unimagi-
native? In The Society of Mind, I try to regard
conflicts as opportunities rather than obstacles,
as openings that we can use to exploit other
kinds of knowledge. For example, section 3.2
of The Society of Mind (Minsky 1987) suggests
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invoking a principle of noncompromise to dis-
card sets of rules with conflicting antecedents
or consequents. The general idea is that
whenever two fragments of knowledge dis-
agree, it may be better to ignore them both
and refer to some other, independent agency.
In effect, this approach is managerial: One
agency can engage some other body of exper-
tise to help decide which rules to apply. For
example, one might turn to case-based rea-
soning to ask which method worked best in
similar previous situations.

Yet another approach would be to engage a
mechanism for inventing a new rule by
trying to combine elements of those rules
that almost fit already. Section 8.2 of The
Society of Mind (Minsky 1987) suggests using
K-line representations for this purpose. To do
so, we must be immersed in a society-of-
agents framework in which each response to
a situation involves activating not one but a
variety of interacting processes. In such a
system, all the agents activated by several
rules can then be left to interact, if only
momentarily (both with one another and
with the input signals) to make a useful self-
selection about which of the agents should
remain active. This could be done by combin-
ing certain current connectionist concepts
with other ideas about K-line mechanisms.
But that can’t be done until we learn how to
design network architectures that can support
new forms of management and supervision
of developmental staging.

In any case, current rule-based systems are
still too limited in ability to express “typical”
knowledge. They need better default machin-
ery. They deal with exceptions too passively;
they need censors. They need better “ring-
closing” mechanisms for retrieving knowl-
edge (see Minsky [1987], section 19.10).
Above all, we need better ways to connect
them with other kinds of representations so
that we can use them in problem-solving
organizations that can exploit other kinds of
models and search procedures.

Connectionist Networks
Up to this point, we have considered ways to
overcome the deficiencies of symbolic sys-

…it is less important for agencies to cooperate than to exploit
one another…



a net can be described as nothing more than
a simple vector—and the network’s input-
output characteristics as nothing more than a
map from one vector space into another. This
arrangement makes it easy to reformulate
pattern recognition and learning problems in
simple terms, for example, of finding the best
such mapping. Seen in this way, the subject
presents a pleasing mathematical simplicity.
It is often not mentioned that we still possess
little theoretical understanding of the compu-
tational complexity of finding such map-
pings, that is, of how to discover good values
for the connection weights. Most current
publications still merely exhibit successful
small-scale examples without probing into
either assessing the computational difficulty
of these problems themselves or of scaling
these results to similar problems of larger size.

However, we now know of many situations
in which even such simple systems have been
made to compute (and, more important, to
learn to compute) interesting functions, par-
ticularly in such domains as clustering, classi-
fication, and pattern recognition. In some
instances, this has occurred without any
external supervision; furthermore, some of
these systems have also performed acceptably
in the presence of incomplete or noisy input
and, thus, correctly recognized patterns that
were novel or incomplete. This achievement
means that the architectures of those systems
must indeed have embodied heuristic con-
nectivities that were appropriate for those
particular problem domains. In such situa-
tions, these networks can be useful for the
kind of reconstruction-retrieval operations we
call ring closing.

However, connectionist networks have lim-
itations as well. The next few sections discuss
some of these limitations along with sugges-
tions on how to overcome them by embed-
ding such networks in more advanced
architectural schemes.

Limitation of Fragmentation:
The Parallel Paradox

In the Epilogue to Perceptrons, Papert and I
argued as follows:

It is often argued that the use of dis-
tributed representations enables a system
to exploit the advantages of parallel pro-
cessing. But what are the advantages of
parallel processing? Suppose that a cer-
tain task involves two unrelated parts. To
deal with both concurrently, we would
have to maintain their representations in
two decoupled agencies, both active at

tems by augmenting them with connectionist
machinery. However, this kind of research
should go both ways. Connectionist systems
have equally crippling limitations, which
might be ameliorated by augmentation with
the sorts of architectures developed for sym-
bolic applications. Perhaps such extensions
and synthesis will recapitulate some aspects
of how the primate brain grew over millions
of years by evolving symbolic systems to
supervise its primitive connectionist learning
mechanisms.

What do we mean by connectionist? The use
of this term is still rapidly evolving, but here
it refers to attempts to embody knowledge by
assigning numeric conductivities or weights
to the connections inside a network of nodes.
The most common form of such a node is
made by combining an analog, nearly linear
part that “adds up evidence” with a nonlin-
ear, nearly digital part that makes a decision
based on a threshold. The most popular such
networks today take the form of multilayer
perceptrons, that is, sequences of layers of such
nodes, each layer sending signals to the next.
More complex arrangements are also under
study that can support cyclic internal activi-
ties; hence, they are potentially more versa-
tile but harder to understand. What makes
such architectures attractive? Mainly, they
appear to be so simple and homogeneous. At
least on the surface, they can be seen as ways
to represent knowledge without any complex
syntax. The entire configuration state of such
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the same time. Then, should either of
those agencies become involved with two
or more sub-tasks, we’d have to deal with
each of them with no more than a quar-
ter of the available resources! If that pro-
ceeded on and on, the system would
become so fragmented that each job
would end up with virtually no resources
assigned to it. In this regard, distribution
may oppose parallelism: the more dis-
tributed a system is—that is, the more
intimately its parts interact—the fewer
different things it can do at the same
time. On the other side, the more we do
separately in parallel, the less machinery
can be assigned to each element of what
we do, and that ultimately leads to
increasing fragmentation and incompe-
tence. This is not to say that distributed
representations and parallel processing
are always incompatible. When we simul-
taneously activate two distributed repre-
sentations in the same network, they will
be forced to interact. In favorable circum-
stances, those interactions can lead to
useful parallel computations, such as the
satisfaction of simultaneous constraints.
But that will not happen in general; it
will occur only when the representations
happen to mesh in suitably fortunate
ways. Such problems will be especially
serious when we try to train distributed
systems to deal with problems that
require any sort of structural analysis in
which the system must represent rela-
tionships between substructures of relat-
ed types—that is, problems that are likely
to demand the same structural resources.
(Minsky and Papert 1988, p. 277)

(See also Minsky [1987], section 15.11.)
For these reasons, it will always be hard for

a homogeneous network to perform parallel
high-level computations, unless we can arrange
for it to become divided into effectively dis-
connected parts. There is no general remedy
for this problem, and it is no special peculiari-
ty of connectionist hardware; computers have
similar limitations, and the only answer is
providing more hardware. More generally, it
seems obvious that without adequate memory
buffering, homogeneous networks must remain
incapable of recursion, as long as successive
function calls have to use the same hardware.
This inability is because without such facili-
ties, either the different calls will cause side
effects for one another, or some of them must
be erased, leaving the system unable to exe-
cute proper returns or continuations. Again,
this might easily be fixed by providing
enough short-term memory, for example, in
the form of a stack of temporary K-lines.

Limitations of Specialization
and Efficiency

Each connectionist net, once trained, can
only do what it has learned to do. To make it
do something else—for example, to compute
a different measure of similarity or to recog-
nize a different class of patterns—would, in
general, require a complete change in the
matrix of connection coefficients. Usually, we
can change the function of a computer much
more easily (at least, when the desired func-
tions can each be computed by compact algo-
rithms) because a computer’s memory cells
are so much more interchangeable. It is curi-
ous how even technically well-informed
people tend to forget how computationally
massive a fully connected neural network is.
It is instructive to compare its size with the
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these specialists, to keep the system from too
much fruitless conflict for access to limited
resources. These management agencies cannot
directly deal with all the small interior details
of what happens inside their subordinates.
Instead, they must work with summaries of
what those subordinates seem to do. This also
suggests that there must be constraints on
internal connectivity: Too much detailed
information would overwhelm those man-
agers. Such constraints also apply recursively
to the insides of every large agency. Thus, in
chapter 8 of The Society of Mind (Minsky
1987), I argue that relatively few direct con-
nections are needed except between adjacent
level bands.

All this suggests (but does not prove) that
large commonsense reasoning systems will
not need to be fully connected. Instead, the
system could consist of localized clumps of
expertise. At the lowest levels, these clumps
would have to be densely connected to sup-
port the sort of associativity required to learn
low-level pattern-detecting agents. However,
as we ascend to higher levels, the individual
signals must become increasingly abstract
and significant, and accordingly, the density
of connection paths between agencies can
become increasingly (but only relatively)
smaller. Eventually, we should be able to
build a sound technical theory about the con-
nection densities required for commonsense
thinking, but I don’t think that we have the
right foundations yet. The problem is that
contemporary theories of computational
complexity are still based too much on worst-
case analyses or coarse statistical assump-
tions, neither of which suitably represents
realistic heuristic conditions. The worst-case
theories unduly emphasize the intractable
versions of problems that, in their usual
forms, present less practical difficulty. The
statistical theories tend to uniformly weight
all instances for lack of systematic ways to
emphasize the types of situations of most
practical interest. However, the AI systems of
the future, like their human counterparts,
will normally prefer to satisfice rather than
optimize—and we don’t yet have theories
that can realistically portray these mundane
sorts of requirements.

Limitations of Context, 
Segmentation, and Parsing

When we see seemingly successful demon-
strations of machine learning in carefully 
prepared test situations, we must be careful
about how we draw more general conclu-

few hundred rules that drive a typically suc-
cessful commercial rule-based expert system.

How connected do networks need to be?
Several points in The Society of Mind suggest
that commonsense reasoning systems might
not need to increase the density of physical
connectivity as fast as they increase the com-
plexity and scope of their performances.
Chapter 6 (Minsky 1987) argues that knowl-
edge systems must evolve into clumps of spe-
cialized agencies, rather than homogeneous
networks, because they develop different
types of internal representations. As this evo-
lution proceeds, it will become decreasingly
feasible for any of these agencies directly to
communicate with the interior of others. Fur-
thermore, there will be a tendency for most
newly acquired skills to develop from the rel-
atively few that are already well developed,
which again will bias the largest-scale con-
nections toward evolving into recursively
clumped, rather than uniformly connected,
arrangements. A different tendency to limit
connectivities is discussed in section 20.8,
which proposes a sparse connection scheme
that can simulate in real time the behavior of
fully connected nets—in which only a small
proportion of agents are simultaneously
active. This method, based on a half-centu-
ry–old idea of Calvin Mooers, allows many
intermittently active agents to share the same
relatively narrow, common connection bus.
This might seem, at first, a mere economy,
but section 20.9 suggests that this technique
could also induce a more heuristically useful
tendency if the separate signals on that bus
were to represent meaningful symbols. Final-
ly, chapter 17 suggests other developmental
reasons why minds might virtually be forced
to grow in relatively discrete stages rather
than as homogeneous networks. Our progress
in making theories about this area might par-
allel our progress in understanding the stages
we see in the growth of every child’s thought.

If our minds are assembled of agencies with
so little intercommunication, how can those
parts cooperate? What keeps them working
on related aspects of the same problem? The
first answer I propose in The Society of Mind is
that it is less important for agencies to coop-
erate than to exploit one another because
those agencies tend to become specialized,
developing their own internal languages and
representations. Consequently, they cannot
understand each other’s internal operations
well—and each must learn to exploit some of
the others for the effects that those others
produce—without knowing in any detail how
these other effects are produced. Similarly,
there must be other agencies to manage all
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sions. This is because there is a large step
between the abilities to recognize objects or
patterns when they are isolated and when
they appear as components of more complex
scenes. In section 6.6 of Perceptrons (Minsky
and Papert 1988), we see that we must be pre-
pared to find that even after training a certain
network to recognize a certain type of pat-
tern, we might find it unable to recognize this
same pattern when embedded in a more com-
plicated context or environment. (Some
reviewers have objected that our proofs of
this fact applied only to simple three-layer
networks; however, most of these theorems
are much more general, as these critics might
see if they’d take the time to extend those
proofs.) The problem is that it is usually easy
to make isolated recognitions by detecting
the presence of various features and then
computing weighted conjunctions of them.
This is easy to do in three-layer acyclic nets.
But in compound scenes, this method won’t
work unless the separate features of all the
distinct objects are somehow properly
assigned to the correct objects. Similarly, we
cannot expect neural networks generally to be
able to parse the treelike or embedded struc-
tures found in the phrase structure of natural
language.

How could we augment connectionist net-
works to make them able to do such things as
analyze complex visual scenes or extract and
assign the referents of linguistic expressions
to the appropriate contents of short-term
memories? It will surely need additional
architecture to represent the structural analy-
sis of a visual scene into objects and their
relationships, for example, by protecting each
midlevel recognizer from seeing input derived
from other objects, perhaps by arranging for
the object-recognizing agents to compete in
assigning each feature to itself, but denying it
to competitors. This method has been suc-

cessfully used in symbolic systems, and parts
have been done in connectionist systems (for
example, by Waltz and Pollack), but many
conceptual missing links remain in this area,
particularly in regard to how a second con-
nectionist system could use the output of one
that managed to parse the scene. In any case,
we should not expect to see simple solutions
to these problems. It might be an accident
that so much of the brain is occupied with
such functions.

Limitations of Opacity
Most serious of all is what we might call the
problem of opacity, that the knowledge
embodied inside a network’s numeric coeffi-
cients is not accessible outside that net. This
challenge is not one we should expect our
connectionists to easily solve. I suspect it is so
intractable that even our own brains have
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thing with no parts provides nothing that we
can use as pieces of explanation” (Minsky
1987).

For such reasons, although homogeneous,
distributed learning systems may work well to
a certain point, they eventually may tend to
fail when confronted with problems of larger
scale—unless we find ways to compensate the
accumulation of many weak connections
with some opposing mechanism that favors
internal simplification and localization.
Many connectionist writers positively seem
to rejoice in the holistic opacity of represen-
tations within which even they are unable to
discern the significant parts and relation-
ships. However, unless a distributed system
has enough ability to crystallize its knowl-
edge into lucid representations of its new
subconcepts and substructures, its ability to
learn will eventually slow, and it will be
unable to solve problems beyond a certain
degree of complexity. In addition, although
this situation suggests that homogeneous net-
work architectures might not work well past a
certain size, this restriction should be bad
news only for those ideologically committed
to minimal architectures. For all we currently
know, the scales at which such systems crash
are large enough for our purposes. Indeed,
the society of mind thesis holds that most of
the agents that grow in our brains only need
to operate on scales so small that each by
itself seems no more than a toy. But when we
combine enough of them—in ways that are
not too delocalized—we can make them do
almost anything.

In any case, we should not assume that we
always can—or always should—avoid the use
of opaque schemes. The circumstances of
daily life compel us to make decisions based
on “adding up the evidence.” We frequently
find (when we value our time) that even if we
had the means, it wouldn’t pay to analyze.
The society of mind theory of human thinking
doesn’t suggest otherwise; on the contrary, it
leads us to expect to encounter incomprehen-
sible representations at every level of the
mind. A typical agent does little more than
exploit other agents’ abilities; hence, most of
our agents accomplish their job knowing vir-
tually nothing of how it is done.

evolved little such capacity over the billions
of years it took to evolve from anemonelike
reticulae. Instead, I suspect that our societies
and hierarchies of subsystems have evolved
ways to evade the problem by arranging for
some of our systems to learn to model what
some of our other systems do (see Minsky
[1987], section 6.12). They might do this
modeling in part by using information
obtained from direct channels into the interi-
ors of these other networks, but mostly, I sus-
pect, they do it less directly—so to speak,
behavioristically—by making generalizations
based on external observations, as though
they were like miniature scientists. In effect,
some of our agents invent models of others.
Regardless of whether these models might be
defective or even entirely wrong (and here I
refrain from directing my aim at peculiarly
faulty philosophers), it suffices for these
models to be useful in enough situations. To
be sure, it might be feasible, in principle, for
an external system to accurately model a con-
nectionist network from outside by formulat-
ing and testing hypotheses about its internal
structure. However, of what use would such a
model be if it merely repeated redundantly?
It would not only be simpler but also more
useful for that higher-level agency to assem-
ble only a pragmatic, heuristic model of this
other network’s activity based on concepts
already available to that observer. (This is evi-
dently the situation in human psychology.
The apparent insights we gain from medita-
tion and other forms of self-examination are
only infrequently genuine.)

The problem of opacity grows more acute
as representations become more distribut-
ed—that is, as we move from symbolic to
connectionist poles—and it becomes increas-
ingly more difficult for external systems to
analyze and reason about the delocalized
ingredients of the knowledge inside distribut-
ed representations. It also makes it harder to
learn, past a certain degree of complexity,
because it is hard to assign credit for success,
or formulate new hypotheses (because the old
hypotheses themselves are not “formulated”).
Thus, distributed learning ultimately limits
growth, no matter how convenient it might
be in the short term, because “the idea of a
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Analogous issues of opacity arise in the
symbolic domain. Just as networks sometimes
solve problems by using massive combina-
tions of elements, each of which has little
individual significance, symbolic systems
sometimes solve problems by manipulating
large expressions with similarly insignificant
terms, such as when we replace the explicit
structure of a composite Boolean function
with a locally senseless canonical form.
Although this technique simplifies some
computations by making them more homoge-
neous, it disperses knowledge about the struc-
ture and composition of the data and, thus,
disables our ability to solve harder problems.
At both extremes—in representations that are
either too distributed or too discrete—we lose
the structural knowledge embodied in the
form of intermediate-level concepts. This loss
might not be evident as long as our problems
are easy to solve, but those intermediate con-
cepts might be indispensable for solving more
advanced problems. Comprehending com-
plex situations usually hinges on discovering
a good analogy or variation on a theme. How-
ever, it is virtually impossible to do this with
a representation, such as a logical form, a
linear sum, or a holographic transforma-
tion—each of whose elements seem meaning-
less because they are either too large or too
small—thus leaving no way to represent sig-
nificant parts and relationships.

Many other problems invite the synthesis
of symbolic and connectionist architectures.
How can we find ways for nodes to refer to
other nodes or to represent knowledge about
the roles of particular coefficients? To see the
difficulty, imagine trying to represent the
structure of the arch in Patrick Winston’s
thesis—without simply reproducing its topol-
ogy. Another critical issue is how to enable
nets to make comparisons. This problem is
more serious than it might seem. Section 23.1
of The Society of Mind discusses the impor-
tance of differences and goals, and section
23.2 points out that connectionist networks
deficient in short term memory will find it
peculiarly difficult to detect differences
between patterns (Minsky 1987). Networks
with weak architectures will also find it diffi-
cult to detect or represent (invariant) abstrac-
tions; this problem was discussed as early 
as the Pitts-McCulloch paper of 1947. Still
another important problem for memory-
weak, bottom-up mechanisms is controlling
search: To solve hard problems, one might
have to consider different alternatives, explore
their subalternatives, and then make compar-
isons among them—yet still be able to return
to the initial situation without forgetting

what was accomplished. This kind of activity,
which we call thinking, requires facilities for
temporarily storing partial states of the system
without confusing these memories. One
answer is to provide, along with the required
memory, some systems for learning and exe-
cuting control scripts, as suggested in section
13.5 of The Society of Mind (Minsky 1987). To
do this effectively, we must have some insula-
tionism to counterbalance our connectionism.
Smart systems need both of these components,
so the symbolic-connectionist antagonism is
not a valid technical issue but only a transient
concern in contemporary scientific politics.

Mind Sculpture
The future work of mind design will not be
much like what we do today. Some program-
mers will continue to use traditional languages
and processes. Other programmers will turn
toward new kinds of knowledge-based expert
systems. However, eventually all this work
will be incorporated into systems that exploit
two new kinds of resources. On one side, we
will use huge preprogrammed reservoirs of
commonsense knowledge. On the other side,
we will have powerful, modular learning
machines equipped with no knowledge at all.
Then, what we know as programming will
change its character entirely—to an activity
that I envision to be more like sculpturing. To
program today, we must describe things very
carefully because nowhere is there any margin
for error. But once we have modules that know
how to learn, we won’t have to specify nearly
so much—and we’ll program on a grander
scale, relying on learning to fill in details.

This doesn’t mean, I hasten to add, that
things will be simpler than they are now.
Instead, we’ll make our projects more ambi-
tious. Designing an artificial mind will be
much like evolving an animal. Imagine your-
self at a terminal, assembling various parts of
a brain. You’ll be specifying the sorts of
things that were only heretofore described in
texts about neuroanatomy. “Here,” you’ll find
yourself thinking, “we’ll need two similar 
networks that can learn to shift time signals
into spatial patterns so that they can be com-
pared by a feature extractor sensitive to a con-
text about this wide.” Then, you’ll have to
sketch the architectures of organs that can
learn to supply appropriate input to those
agencies and draft the outlines of intermedi-
ate organs for learning to suitably encode the
output to suit the needs of other agencies.
Section 31.3 of The Society of Mind (Minsky
1987) suggests how a genetic system might
mold the form of an agency that is predes-
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about one agency imposes additional con-
straints and requirements on several others
and, in turn, on how to train those others. In
addition, as in any society, there must be
watchers to watch each watcher, lest any one
or a few of them get too much control of the
rest.

Each agency will need nerve bundle–like
connections to certain other ones for sending
and receiving signals about representations,
goals, and constraints, and we’ll have to make
decisions about the relative size and influence
of every such parameter. Consequently, I
expect that the future art of brain design will
have to be more like sculpturing than like our
current craft of programming. It will be much
less concerned with the algorithmic details of
the submachines than with the balancing of
their relationships; perhaps this situation
better resembles politics, sociology, or man-
agement than present-day engineering.

Some neural network advocates might
hope that all this will be superfluous. Why
not seek to find, instead, how to build one
single, huge net that can learn to do all these
things by itself. Did not our own human
brains come about as the outcome of one
great learning search? We could only regard
this as feasible by ignoring the facts—the
unthinkable scale of that billion-year venture
and the octillions of lives of our ancestors.
Remember, too, that even so, in all that evo-
lutionary search, not all the problems have
yet been solved. What will we do when our
sculptures don’t work? Consider a few of the
wonderful bugs that still afflict even our own
grand human brains: obsessive preoccupation
with inappropriate goals; inattention and inabili-
ty to concentrate; bad representations; excessively
broad or narrow generalizations; excessive accu-
mulation of useless information; superstition:
defective credit-assignment schema; unrealistic
cost-benefit analyses; unbalanced, fanatical
search strategies; formation of defective catego-
rizations; inability to deal with exceptions to
rules; improper staging of development, or living
in the past; unwillingness to acknowledge loss;
depression or maniacal optimism; and excessive
confusion from cross-coupling.

tined to learn to recognize the presence of
particular human individuals. A functional
sketch of such a design might turn out to
involve dozens of different sorts of organs,
centers, layers, and pathways. The human
brain might have many thousands of such
components.

A functional sketch is only the start. When-
ever you use a learning machine, you must
specify more than just the sources of input
and the destinations of output. It must also
somehow be impelled toward the sorts of
things you want it to learn—what sorts of
hypotheses it should make, how it should
compare alternatives, how many examples
should be required, how to decide when
enough has been done, when to decide that
things have gone wrong, and how to deal
with bugs and exceptions. It is all very well
for theorists to speak about “spontaneous
learning and generalization,” but there are
too many contingencies in real life for such
words to mean anything by themselves.
Should this agency be an adventurous risk
taker or a careful, conservative reductionist?
One person’s intelligence is another’s stupidi-
ty. And how should that learning machine
divide and budget its resources of hardware,
time, and memory?

How will we build such grand machines
when so many design constraints are involved?
No one will be able to track all the details
because just as a human brain is constituted
by interconnecting hundreds of different
kinds of highly evolved subarchitectures, so
will these new kinds of thinking machines.
Each new design will have to be assembled by
using libraries of already developed, off-the-
shelf subsystems already known to be able to
handle particular kinds of representations
and processes. Also, the designer will be less
concerned with what happens inside these
units and more concerned with their inter-
connections and interrelationships. Because
most components will be learning machines,
the designer will have to specify not only
what each one will learn but also which agen-
cies should provide what incentives and
rewards for which others. Every such decision
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…as in any society, there must be watchers to watch each
watcher, lest any one or a few of them get too much control 
of the rest.



Seeing this list, one has to wonder, “Can
people think?” I suspect there is no simple
and magical way to avoid such problems in
our new machines; it will require a great deal
of research and engineering. I suspect that it
is no accident that human brains contain so
many different and specialized brain centers.
To suppress the emergence of serious bugs,
both those natural systems and the artificial
ones we shall construct will probably need
intricate arrangements of interlocking checks
and balances, in which each agency is super-
vised by several others. Furthermore, each of
these other agencies must themselves learn
when and how to use the resources available
to them. How, for example, should each
learning system balance the advantages of
immediate gain over those of conservative,
long-term growth? When should it favor the
accumulation of competence over compre-
hension? In the large-scale design of our
human brains, we still don’t know much of
what all the different organs do, but I’m will-
ing to bet that many of them are largely
involved in regulating others, to keep the
system as a whole from falling prey to the
sorts of bugs that were mentioned above.
Until we start building brains ourselves to
learn what bugs are most probable, it will
remain hard for us to guess the actual func-
tions of much of that hardware.

There are countless wonders yet to be dis-
covered in these exciting new fields of
research. We can still learn a great many
things from experiments on even the simplest
nets. We’ll learn even more from trying to
make theories about what we observe. And
surely, soon we’ll start to prepare for that
future art-of-mind design by experimenting
with societies of nets that embody more
structured strategies—and, consequently,
make more progress on the networks that
make up our own human minds. And in
doing all these experiments, we’ll discover
how to make symbolic representations that
are more adaptable and connectionist repre-
sentations that are more expressive.

It is amusing how persistently people
express the view that machines based on sym-
bolic representations (as opposed, presum-
ably, to connectionist representations) could
never achieve much or ever be conscious and
self-aware. I maintain it is precisely because
our brains are still mostly connectionist, that
we humans have so little consciousness! It’s
also why we’re capable of so little parallelism
of thought—and why we have such limited
insight into the nature of our own machinery.
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