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It is the intention of this �nal part to look back on the technical material and try to

perceive some overall structure. This is done principally by developing a neural net taxonomy

or classi�cation scheme but also by providing historical and disciplinary perspectives.

1 Nets vs. Symbols (revisited)

This was the point of departure at the beginning of the course but we review the two paradigms
again, this time in more depth and with some historical background.

From the early days of computing in the late 1940s and early '50s, there have existed

two approaches to the problem of developing machines which exhibit `intelligent' behaviour.
One of these tries to capture knowledge in some domain as a set of atomic semantic objects
or symbols, and to manipulate these according to a set of formal algorithmic rules. This
symbolic- algorithmic paradigm has, over the last twenty years, represented the mainstream
of research in Arti�cial Intelligence, and indeed the very term `AI' is usually taken to refer to

this school of thought.
Concurrent with this however, has been another line of research which uses machines

whose architecture is loosely based on that of the animal brain, and which learn from a training
environment, rather than being preprogrammed in some high level computer language. Work
with these so-called neural networks was very active in the 1960s, su�ered a loss of popularity,

during the '70s and early '80s, but is now enjoying a revival of interest.

1.1 The symbolic paradigm

Although the �rst electronic digital computers were designed to perform numerical calcula-

tions, it was apparent to the early workers that the machines they had built were also capable
of manipulating symbols, since the machines themselves knew nothing of the semantics of the
bit-strings stored in their memories. Thus Alan Turing speaking in 1947 about the design for

the proposed Automatic Computing Engine (ACE), saw the potential to deal with complex

game playing situations `Given a position in chess the machine could be made to list all the
"winning combinations" to a depth of about three moves....' quoted from [18].

The machines on which the modern AI fraternity now run their algorithms have not
changed in any fundamental conceptual way from the Pilot ACE which was eventually built;

all of these being examples of the classic Von Neumann architecture. Granted, there has been a

speed increase of several orders of magnitude, and hardware parallelism is sometimes available,

but contemporary `AI engines' are still vehicles for the instantiation of the theoretic stance

which claims that cognition can be described completely as a process of formal, algorithmic

symbol manipulation.
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Mainstream AI has proved successful in many areas and, indeed, with the advent of ex-

pert systems has become big business. For a brief history of its more noteworthy achievements

see [29].

However AI has not ful�lled much of the early promise that was conjectured by the

pioneers in the �eld. This is brought home by Dreyfus in his book `What Computers Can't

Do' [8] where he criticizes the early extravagant claims and outlines the assumptions made

by AI's practitioners. Principal among these are the belief that all knowledge or information

can be formalised, and that the mind can be viewed as a device that operates on information

according to formal rules. It is precisely in those domains of experience where it has proved

extremely di�cult to formalise the environment, that the `brittle' rule-based procedures of

AI have failed.

The di�erentiation of knowledge into that which can be treated formally and that which

cannot, is made explicit by Smolensky (1988) [34] where he makes the distinction between

cultural, or public knowledge and private, or intuitive knowledge. The stereotypical examples

of the former are found in science and mathematics, whereas the latter describes, for instance,

the skills of a native speaker or the intuitive knowledge of an expert in some �eld. In the

connectionist view, intuitive knowledge cannot be captured in a set of linguistically formalized
rules and a completely di�erent strategy must be adopted.

1.2 The connectionist paradigm

The central idea is that in order to recreate some of processing capabilities of the brain it
is necessary to recreate some of its architectural features. Thus a connectionist machine, or
neural net, will consist of a highly interconnected network of comparatively simple processors
(the nodes, units or arti�cial neurons) each of which has a large fan-in and fan-out. In

biological neurons the distinctive processing ability of each neuron is supposed to reside in
the electro-chemical characteristics of the inter-neuron connections, or synapses. In many
connectionist systems this is modeled by assigning a connection strength or weight to each
input. However, there are other ways of associating a set of parameters to a node which
capture its functionality as in, for example, the cubic nodes. In all cases the net ensemble of

these is the embodiment of the knowledge the system possesses.
Moving to dynamics, biological neurons communicate by the transmission of electrical

impulses, all of which are essentially identical, so that information is contained in the spatio-
temporal relationships between them. Neurons are continually summing or integrating the ef-

fects of all its incoming pulses and, depending on whether the result is excitatory or inhibitory,

an output pulse may or may not be generated. In arti�cial nets, each node continually up-
dates its state by generating an internal activation value which is a function of its inputs

and internal parameters. This is then used to generate an output via some activation-output
function which is typically a squashing function like the sigmoid.

At the system level, it is possible to draw up a list of features displayed by many arti�cial
neural nets but, since the connectionist banner has been attached to such a wide diversity

of systems, any such list will inevitably not apply to all of them; however the following is a
typical set of characteristics:

� The node parameters are trained to their �nal values by continually presenting members
from a set of patterns or training vectors to the net, allowing the net to respond to each

presentation, and altering the weights accordingly; that is, they are adaptive rather

than preprogrammed systems.
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� Their action under presentation of input is often best thought of as the time evolution

of a dynamical physical system and there may even be an explicit description of this

in terms of a set of di�erential equations. This was the nature, for example, of the

continuous valued Hop�eld net and the competitive nets.

� They are robust under the presence of noise on the inter-unit signal paths and exhibit

graceful degradation under hardware failure. (Recall the examples on the 1st problem

sheet)

� A characteristic feature of their operation is that they work by extracting statistical

regularities or features from the training set. This allows the net to respond to novel

inputs in a useful way by classifying them with one of the previously seen patterns or by

assigning them to new classes. (Recall the simulation exercise with the 11-input TLU)

� Typical modes of operation are as associative memories, retrieving complete patterns

from partial data (Recall the Hop�eld net demo), and as pattern classi�ers (The A/B

classi�cation with delta rule simulation)

� There is no simple correspondence between nodes and high level semantic objects.
Rather, the representation of a `concept' or `idea' within the net is via the complete
vector of unit activities, being distributed over the net as a whole, so that any given
node may partake in many semantic representations. Think about the `codes' in the
424 encoders etc. which form distributed (internal) representations of the vectors which
are then explicitly represented in a one-to-one way at the outputs.

Concerning this last point there is a divergence of opinion in the connectionist camp.
Many workers have exhibited nets that contain at least some nodes which denote high level
semantic constructs [32, 37]. In [34] Smolensky argues for the `Proper treatment of Con-
nectionism', in which nets can only operate at a sub-symbolic level and where there are no
local high- level semantic representations. He notes that, otherwise, connectionism runs the

risk of degenerating into a parallel implementation of the symbolic paradigm. Indeed, high
level semantic nets have been studied outside the connectionist milieu as `pulse networks' on
weighted digraphs [7] where no `neural' analogy is implied.

2 A brief history of neural nets

2.1 The early years

The ideas concerning machines that incorporate neural features have always been contem-

poraneous with work on the general purpose computers in common use today. In fact the
analogy between computing and the operation of the brain was to the fore in much of the
early work in this area. Thus von Neumann, in the �rst draft of a report on the EDVAC [35],

makes several correspondences between the proposed circuit elements and animal neurons.

In 1942 Norbert Weiner [15] and his colleagues were formulating the ideas that were
later christened `Cybernetics', and which he de�ned as `control and communication in the

animal and the machine'. Central to this programme, as the description suggests, is the idea

that biological mechanisms can be treated from an engineering and mathematical perspective.

Of central importance here is the idea of feedback

[demo xpt on feedback - `�ngers together']
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With the rise of AI and cognitive science, the term `Cybernetics' has become unfash-

ionable in recent years [1] it might be argued that, because of its interdisciplinary nature,

the new- wave of connectionism should properly be called a branch of Cybernetics: certainly

many of the early neural-net scientists would have described their activities in this way.

In the same year that Weiner was formulating Cybernetics, McCulloch and Pitts [26]

published the �rst formal treatment of arti�cial neural nets. The main result in this historic

(but opaque) paper, as summarized in [36] is that any well de�ned input-output relation can

be implemented in a formal neural network.

One of the key attributes of nets is that they can learn from their experience in a

training environment. In 1949, Donald Hebb [13] indicated a mechanism whereby this may

come about in real animal brains. Essentially, synaptic strengths change so as to reinforce

any simultaneous correspondence of activity levels between the pre-synaptic and post-synaptic

neurons. Translated into the language of arti�cial neural nets, the weight on an input should

be augmented to re
ect the correlation between the input and the unit's output. Learning

schemes based on this `Hebb rule' have always played a prominent role.

The next milestone is probably the invention of the Perceptron by Rosenblatt in 1957;

much of the work with these is described in his book `Principles of Neurodynamics' [30]. One
of the most signi�cant results presented there was the proof that a simple training procedure
(the perceptron training rule - lecture 2) would converge if a solution to the problem existed.

Rumelhart and Zipser (1985) [31] give some interesting anecdotes and reminiscences

from this era.
In 1969 enthusiasm for neural nets was dampened somewhat by the publication of Min-

sky and Papert's book `Perceptrons' [27]. Here, the authors show that there is an interesting
class of problems (those that are not linearly separable) that single layer perceptron nets
cannot solve, and they held out little hope for the training of multi-layer systems that might

deal successfully with some of these. Minsky had clearly had a change of heart since 1951,
when he and Dean Edmonds had built one of the �rst network-based learning machines. The
fundamental obstacle to be overcome is the so-called `credit assignment problem': in a mul-
tilayer system, how much does each unit (especially one not in the output layer) contribute
to the error the net has made in processing the current training vector? (This is the problem

to which BP is addressed).
In spite of `Perceptrons', much work continued in what was now an unfashionable area,

living in the shadow of symbolic AI: Grossberg was laying the foundations for his Adaptive
Resonance Theory (ART) [6, 11]. Fukushima was developing the cognitron [9]; Kohonen was

investigating nets that used topological feature maps [22] (lecture 7), and Aleksander [2] was

building hardware implementations of the nets based on the n-tuple technique of Bledsoe and
Browning [5].

There have been several developments over the last few years that have led to a resur-
gence of interest in nets. Some of these factors are technical and show that Minsky and Papert

had not said the last word on the subject, while others are more general; in the next section
we look at both these strands of thought.

2.2 The neural net renaissance

In 1982 John Hop�eld [19], then a physicist at Caltech, showed that a highly interconnected

network of threshold logic units could be analyzed by considering it to be a physical dynamic

system possessing an `energy'. The process of associative recall, where the net is started in
some initial random state and goes on to some stable �nal state, parallels the action of the

system falling into a state of minimal energy.
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This novel approach to the treatment of nets with feedback loops in their connection

paths (recurrent nets), has proved very fruitful and has led to the involvement of the physics

community, as the mathematics of these systems is very similar to that used in the Ising-spin

model of magnetic phenomena in materials [3]. In fact something very close to the `Hop�eld

model' had been introduced previously by Little , but here the emphasis was on this analogy

with spin systems, rather than the energy-based description. Little [24] also made extensive

use of a quantum mechanical formalism, and this may have contributed to the paper's lack

of impact.

A similar breakthrough occurred in connection with non-recurrent (feedforward) nets,

when it was shown that the credit assignment problem had an exact solution. The resulting

algorithm, `Back error propagation' or simply Backpropagation also has claim to multiple

authorship, as noted by Grossberg in [12]. Thus it was discovered by Werbos [38] rediscovered

by Parker [28], and discovered again and made popular by Rumelhart, Hinton and Williams

[32].

Aside from these technical advances in analysis, there is also a sense in which neural net-

works are just one example of a wider class of systems that the physical sciences have started

to investigate which include cellular automata [33], fractals [25], and chaotic phenomena [16].
Traditionally physics has sought to explain by supposing that there is some simple underlying
global model, usually consisting of a di�erential equation, to which the real situation is sup-
posed to approximate as a perturbation. Now some investigators are meeting the complexity

of dynamical systems `head on' as it were, and are supposing that any macroscopic ordering
is an emergent property, arising from the action of a large number of simple stochastic ele-
ments acting in concert. Statistical physics represents the vanguard of this movement that
now includes the areas noted above. Neural nets are also complex dynamical systems with
emergent collective properties, as noted by Hop�eld in the title of his original paper [19] and

it is not surprising, in hindsight, that the solid-state statistical physicists have managed to
apply their theories to the subject.

Now in order to investigate these new models, it is often necessary to resort to computer
simulation, and the power of this method has obviously been greatly enhanced by advances in
technology. Thus certain experiments would simply have been unthinkable �fteen years ago

by the average worker, given the accessibility and power of the computing resources available.
In summary therefore, we may say that there has, in recent years, been a marked

increase in neural net research because of new mathematical insights, a conducive scienti�c
zeitgeist, and enormous improvement in the ability to perform simulation.

3 Classifying neural net structures

On a �rst exposure to the neural net literature, it may seem that the whole area is simply
a large collection of di�erent architectures, node, types etc., which are somewhat ad hoc and

which don't appear related in any way. It is the intention of this section to try and give a

framework for classifying any network which enables it to be viewed as a special instance of,
or as a composite of, only a handful of structures. All of these have been presented in previous
lectures, we simply draw them together here for a comparative review. We start, however by

reviewing the types of task that neural nets can perform.
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3.1 Neural net tasks

Recall the example of pattern recall with the `T's and the examples in the Hop�eld net demo

(�gure reproduced here for clarity).

[slides of Ts]

The middle image is split into two halves: the top half or key is an uncorrupted portion

of the original input vector; the rest of the input is random noise. If the net can retrieve the
original training pattern from (b) then it is said to be acting as a content addressable memory

or CAM. The lower image shows the original `T' with the uniform addition of noise obtained

by inverting each pattern element with probability 0.2. If the net can retrieve the original
image then it is now behaving as a �lter or noise extractor. Both of these are instances of

auto-associative recall where a partial or noisy image is restored to some prototype.
The top image on the second slide shows a training vector pair, with input and output

vectors on the left and right respectively.



Neural Nets: 10 7

[hetero-associative recall on `T's]

The lower image shows a noisy input recalling the original output vector. The split of
the training pattern into two dissimilar halves, leads to the name hetero-associative recall for
this process.

Suppose however, that in the last example we had uni�ed the input and output patterns

side by side into a single training vector. By keying on the left half of this and performing
auto- association, we obtain a similar result (although not perhaps as noise resilient) to
that obtained in the case of hetero- association. Thus conceptually both hetero- and auto-
association can perform similar tasks; this point of view is useful later in comparing modes
of learning.

As a �nal task, consider the hetero-associative case where the target or output pattern
is much smaller than that on the input, and where it represents a highly compressed encoding
of the input set (possibly with one node `on', or several nodes `on'). In this case we talk of
the net performing pattern classi�cation, and introducing it in this way, classi�cation can be
seen as a special case of hetero-association.

3.2 A taxonomy of arti�cial neurons

It is useful to de�ne the functional behaviour of all the unit types using the activation-output

model introduced for the discussion of cubic nodes.

x1

x2

xn

{ wk } activation-output
function

a y

[activation-output model]

xi is a set of n inputs, and �k, a set of N internal parameters. The activation a is a func-

tion of the inputs and parameters, a = a(�k; xi). The output y is a function of the activation,
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y = y(a), de�ned by the activation-output relation. Splitting the node functionality up like

this can assist the understanding of what `ingredients' have been used in the node make-up.

We now describe some common node types and use these to draw up a list of criteria

that may be used to classify them.

3.2.1 Nodes using a linear weighted sum of inputs

These are by far the most common. The parameters �k now consist of a set of n weights

wi, one for each input, and a threshold parameter �, that may be thought of as a weight

associated with an input that is tied to `-1'. The activation a, is given by

a =
nX

i=1

wixi � � (1)

The simplest possible activation-output a-o relation to use in conjunction with (1) is

to put y = a. The resulting unit is found in the counterpropagation nets of Hecht-Nielson

[14] Note that y takes on a continuous range of values and so networks of these units are

computationally analogue.
Other possibilities for a-o include the threshold function used in TLUs which can there-

fore only use Boolean values. The other popular output law is based on the sigmoid function.
Another function, used by Fukushima in his cognitron [18] is given by

y =

(
0 if a < 0
a if a � 0

(2)

y

a
[ramp activation]

As well as using y directly as an analogue value, it is possible to interpret it as the

probability that a `1' is emitted from the output in a stochastic, boolean valued node. This is
used to good e�ect in the Reward Penalty algorithms [4] and the Boltzmann Machines [17].

The main feature of the hard-limiter and sigmoid functions is their nonlinearity, a

feature which can be highly signi�cant in the way that neural nets process information, and
which Grossberg discusses at length in [12].

3.2.2 More complex nodes

It is possible to extend the simple activation relation (1) so that rather than just summing

over terms linear in the inputs, we include higher order terms that are multilinear in these

variables. This gives us the sigma-pi nodes. Any of the activation-output relations described
above may be used with the sigma-pi activation.

Alternatively, we may de�ne a node whose inputs and outputs are boolean, and which

can perform any (perhaps stochastic) boolean function of its inputs (not necessarily linearly
separable). The �k are then the site-values at the corners of n-cube and we have the so-called

cubic nodes.
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3.2.3 Criteria for classi�cation

In the light of the above examples, it is proposed that the following is a list of features that

may act as dimensions in a `node space' in the study of neural nets.

� The form of the function a(�k) - e.g. linear, sigma-pi, cubic.

� The activation-output relation - linear, hard-limiter, or sigmoidal.

� The nature of the signals used to communicate between nodes - analogue or boolean.

� The dynamics of the node - deterministic or stochastic.

3.3 A taxonomy of net structures

The last section dealt with an analysis of the micro-structure of the net at node level; here we

deal with the overall topology and dynamics. Quite generally, in connection with the latter,

we usually recognize two phases of net operation: a training phase, when the node parameters
�k are being changed according to some learning rule, and a testing phase when these variables
remain static and when we are particularly interested in the net's response to new, unseen
patterns.

3.3.1 Feedforward nets

These are nets that contain no feedback loops in their inter-node connection paths. Thus,
starting from any node in the net and tracing its fan-out, there will come a point after a

�nite number of steps when this process terminates at an output node which does not have
a fan-out. Complementary to these are a set of input nodes or input terminals which have
no fan-in; they have no functionality and are merely fan-out distribution points. The most
general feedforward net is shown below

input unit

hidden unit

output unit

[general feedforward net]

The input and output nodes are accessible to the training environment and may there-

fore have signals directly imposed on them from outside. In between these two are a set of

nodes referred to as hidden since they may not be accessed by the environment. It is the task
of these units to develop an internal representation of the training set. In this context the

hidden units are sometimes thought of as extracting features, or encoding the environment

[10]. This is most apparent if there are fewer hidden than input nodes, and the net must
perform some data compression. This is the basis for the operation of the encoder nets which

were used in the simulation exercises.
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One specialization of the general feedforward net is that where it is possible to distin-

guish a series of distinct layers. Formally this may be described in the following way: there

does not exist a set of three units A, B and C, such that C receives input from A and B,

and B receives input from A. The forbidden structure is shown below together with a typical

3-layer feedforward net.

A

B

C

can’t have...

[forbidden layered structure and a layered net]

The dynamics of feedforward nets is straightforward. In the layered case, inputs are
applied to the input nodes and subsequent layers evaluate their node outputs until the output
layer is reached. In the more general case care has to be taken to ensure that all the inputs

to a given node are valid before its evaluation. This whole process is referred to as a forward

pass.
The perceptron rule and delta rule could be used to train feedforward nets with no

hidden units. The backpropagation algorithm allowed training of hidden units in these nets.

3.3.2 Recurrent nets: topology

These are nets which have feedback loops in their inter-node connection paths. Thus there

must exist at least one node such that, if the fan-out of that node is traced forward, then after

a �nite number of steps the node is revisited. In recurrent nets there is no distinction between
input and output, rather there is a set of visible units which interface with the environment
and, as in the feedforward case, a number of hidden units which do not. The way this interface

operates is discussed below under `dynamics'. The Hop�eld net was an example of a recurrent

net with no hidden units. The Boltzmann machines [17] (not dealt with on this course) allow
hidden units

A typical recurrent net is shown below
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[recurrent net]

The Hop�eld net was a special case where there was total interconnectivity and all

connections were symmetric.

3.3.3 Recurrent nets: dynamics

There are two fundamental modes of operation - synchronous or parallel update, and asyn-

chronous update. In the former, all the nodes evaluate their new output together, and the net
is `clocked' globally. In the latter case, at each time step a node is selected at random to be
updated. Both synchronous and asynchronous modes can be thought of as extreme instances

of the more general case where there is a probability p that any node gets updated. For a
comparison of net behaviour in these two modes see [10].

In the case of synchronous dynamics, and with deterministic nodes, the net is a deter-

ministic �nite automaton with a characteristic state space, where the state of the net is just
the vector of unit outputs. These spaces may be partitioned into sets of states or con
uents

such that all states belong to only one con
uent, and transitions are con�ned to pairs of states
within each one. Examples of con
uent structure were shown in the �gure `state diagrams
for synchronous update' in lecture 5.

con
uent structures

All con
uents can be divided into two parts: a tree like fragment or transient and a
cycle. In the left hand part of the �gure, the cycle consists of a single state returning to itself
- a single-state cycle or 1-cycle; in the right hand �gure it includes several states, giving a

multiple-cycle. Starting the net in a random state will usually mean beginning on a transient,

and subsequent transitions will be made until a cycle is reached. Therefore this type of

dynamics implies that we have to wait for the net to reach some kind of equilibrium.

Asynchronous operation implies the net is no longer deterministic, since nodes are
selected for update at random. Therefore although we can de�ne the state of the net at

any time as before, the state structure is probabilistic and more complex than the one given

above. (This leads to diagrams like the ones used with the Hop�eld net). The concept of
reaching equilibrium can be retained by the introduction of an `energy function' associated

with the net; this was one of the main insights given by Hop�eld who showed that the process
of coming to equilibrium may be thought of as one of energy minimisation. In this way

memories could be thought of as states associated with stable energy minima, into which
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random starting states would eventually fall. The energy is chosen so that each neuron

update implies a decrease in its value, and so we imagine an energy `landscape' where, even

though the next state of the system is not known a priori, the transition is guaranteed to be

`downhill' in the energy space.

We now turn to the question of how the network interacts with the environment. In

training, a vector will be applied to these nodes in such a way that their outputs take the

same values as the corresponding vector components. If there are any hidden nodes, the net

is allowed to reach equilibrium by allowing these to update, if there are none we proceed

directly to the use of the learning rule where the weights are then changed.

Under test, there are (at least) two ways of inputting information. One is to clamp a

subset of the visible units and keep the clamp on for the entire test, while the net reaches

equilibrium. The clamp can be freely reselected at each trial from the entire collection of

visible units. This corresponds to the use of the net as a content addressable memory (see

`node tasks' section) and is the mode used with the Boltzmann Machines. Alternatively we

may initialize the state of the net from an input vector, and then let the net operate completely

freely, with all nodes partaking in the update process: this is the preferred mode when using

the Hop�eld nets and corresponds to recall from noisy data. Note, however, that the Hop�eld
net may also be used as a CAM.

3.4 Competitive learning nets

These are a kind of hybrid, where a feedforward structure contains at least one layer with intra-
layer recurrence (see diagram in lecture 7). Each node is connected to a large neighbourhood
of surrounding nodes by negative or inhibitory weighted inputs, and to itself (and possible a

small local neighbourhood) via positive or excitatory inputs. These lateral connections are
usually �xed in magnitude and do not partake in the learning process. It is also connected to
the previous layer by a set of inputs which have trainable weights of either sign. The point of
the lateral recurrent links is to enhance an initial pattern of activity over the layer, resulting
in the node which was most active being turned fully `on', and the others being turned `o�';
hence the label `competitive' or `winner-take-all' being applied to these nets.

The object here is to encode groups of patterns in a 1-out-of- n code, where each class
is associated with an active node in the winner-take-all layer. This mechanism, or some
minor variant, is a key component in Grossberg's ART [6, 11] Fukushima's cognitron [9] and
Kohonen's nets that develop topological feature maps [21].

3.5 Criteria for classi�cation

What was done for nodes in the last section is now done for net structures, so that the

following is proposed as a set of attributes for net classi�cation.

� Basic net topology - Recurrent , competitive, or feedforward.

� Hidden units - present or absent.

� Dynamics - Synchronous or asynchronous.

3.6 A taxonomy of training algorithms

These fall into three main categories. These are described individually and are followed by a

discussion of the relation between the environment and the net, and the resources required
for training.
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3.6.1 Preprogramming

In this scheme the weights are not learnt as such by a gradual, iterative process of training

vector presentation and update, rather they are �xed according to some prescription that

makes use of all the vectors at once; in a sense the net is not trained but programmed. The

best known example of this occurs in the Hop�eld model.

3.6.2 Supervised learning

This is usually performed with feedforward nets where training patterns are composed of two

parts, an input vector and an output vector, associated with the input and output nodes

respectively. A training cycle consists of the following steps. An input vector is presented at

the inputs together with a set of desired responses, one for each node, at the output layer. A

forward pass is done and the errors or discrepancies, between the desired and actual response

for each node in the output layer, are found. These are then used to determine weight changes

in the net according to the prevailing learning rule.

The term `supervised' originates from the fact that the desired signals on individual

output nodes are provided by an external `teacher'. The best known examples of this technique
occur in the backpropagation algorithm, the delta rule and perceptron rule.

A popular measure of the error E for a single training pattern, is the sum of square
di�erences

E =
1

2

X
i

(ti � yi)
2 (3)

where ti is the desired or target response on the ith unit, and yiis that actually produced
on the same unit. This is appealing because of its simplicity, but is somewhat ad hoc (why not
use the fourth power of di�erences?) and Hop�eld [20] has argued for the use of an alternative
measure based on information theoretic ideas.

3.6.3 Unsupervised learning

This is usually found in the context of recurrent and competitive nets. There is no separation
of the training set into input and output pairs. Typically a training cycle will consist of the
following steps: a vector is applied to the visible nodes (or in the case of competitive learning,
the input nodes); the net is allowed to reach equilibrium (or a `winner' established); weight

changes are made according to some prescription. It is the amalgamation of input-output

pairs, and hence the disappearance of the external supervisor providing target outputs, that

gives this scheme its name. This kind of learning is sometimes referred to as self-organization.

3.6.4 Computational resources and complexity

In [39] Williams makes the useful distinction between `on-line' and `o�-line' learning. In the

latter the net is trained not only with its own resources, but also with the aid of an auxiliary
central computing facility. This orchestrates the learning process and may pass information

to, and gather information from subsets of nodes in the network . This is clearly the case

in the preprogramming style of learning used for Hop�eld nets. It is also arguably the case
in the backpropagation type algorithms, where errors and weight values are accumulated at

a node from its fanout. In on-line training, the net only makes use of the facilities o�ered

internally within each node, together with perhaps, a minimal number of control signals to

initiate various stages in each learning cycle.
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The on-line versus o�-line distinction may therefore be reformulated as a local versus

global one. Learning is local if processing is takes place principally in individual units, and

if these make use of information immediately available both in space and time. This means

that we are restricting operations to the use of a node's current inputs and output; storage

of previously calculated values being prohibited. Learning is o�- line if large amounts of data

are continually being processed and redistributed around the net along pathways that do not

form part of its natural connectivity.

Conceptually it may be possible to reformulate an o�-line algorithm as an on-line one,

if the boundary between the environment and the net is redrawn, so that resources previously

within the `net' are now thought of as within a more supervisory environment. In spite of

the informality of these distinctions, it is believed useful to include them in the general net

taxonomy.

3.7 Final remarks

Clearly not all nets will fall neatly into the categories described here - some nets will contain

mixtures of features described here - but it is believed that some such taxonomy is useful
in approaching a �eld which now has a large proliferation of architectures, structures and
algorithms. One facet which has not been dealt with here is the relation between the operation
of neural nets and conventional pattern classi�cation and recognition techniques. Some of

these links are established by Lippmann [23] who also gives a review of some speci�c neural
net types.

4 Neural nets in di�erent disciplines

Neural nets have attracted attention from workers in many, apparently disparate, �elds. It is
ironic that the interdisciplinary fusion that was cybernetics should have fallen into disrepute
in the West (the word is still fashionable in the Eastern bloc). Much of the work done in
cybernetics now goes under the title of `General Systems Theory'. Neural nets would be sub-

sumed under its general remit and the interdisciplinary links required for it to 
ourish would
have been forged. There are other, related areas which would now also fall under the cyber-
netics umbrella, and from which the study of neural nets could bene�t. These include the
use Genetic Algorithms (GAs), the study of cellular automata, robotics, adaptive control and

mainstream AI. Many scientists now recognise that there is a common thread in all this re-

search and the term `arti�cial life' has been coined to embrace these areas collectively. The key

question appears to be "How can assemblies of simple system elements exhibit self-organising

behaviour patterns and adapt to their environment in ways that appear intelligent?".
Returning to the con�nes of neural networks, their study can be approached from several

di�erent points of view leading to di�erent ideas as to their utility and the goals of the research.
Neuroscientists and psychologists are interested in nets as computational models of

the animal brain developed by abstracting, what are believed to be, those properties of real
nervous tissue that are essential for information processing. Many biologists are sceptical

about the ultimate power of some of the more impoverished models of neurons like TLUs and

insist that more detail is necessary to explain the brain's function; only time will tell.
On the other hand, engineers and computer scientists see neural nets as one style of

parallel distributed computing which may usefully be recruited for solving complex problems

in pattern recognition and classi�cation, associative memory, and function optimisation. The
hope is that they may be more successful in dealing with real-world situations than the
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conventional algorithmic techniques that have predominated in machine intelligence. They

do not concern themselves with biological realism and are perhaps culpable of sometimes

ignoring relevant architectural cues from natural systems.

Physicists and mathematicians are drawn to the study of networks from an interest in

non-linear dynamical systems, statistical mechanics and automata theory. They often treat

recurrent nets by (like Hop�eld nets) by taking the limit as the number of neurons tends to

in�nity and dealing with the resulting network as a thermodynamic system which avails itself

of all the machinery of statistical mechanics. There is contact to be made here with some of

the concepts in adaptive control theory and the use of an `energy' function may be traced

back to Lyapunov; hence they are often referred to as Lyapunov functions.

Some of the threads running through much of this work are the ability of neural nets to

learn and self-organise, to generalise from training data, and to process information in other

ways normally thought of as intelligent.
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