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1 Finding the weights

So far we have described the dynamics of Hop�eld nets but nothing has been said about

the way the weights are established for a particular problem. In his original paper, Hop�eld

(1982) did not give a method for training the nets, rather he gave a prescription for making a

weight set, given a set of patterns to be stored. Here, we shall relate the storage prescription,

later on, to a biologically inspired learning rule - the Hebb rule - and show that the nodes

may also be trained individually using the delta rule.

1.1 The storage prescription

The rationale behind the prescription is based on the desire to capture, in the value of the

weights, local correlations between node outputs when the net is in one of the required stable

states. Recall that these correlations also gave rise to the energy description and the same

kind of arguments will be used again.

Consider two nodes which, on average over the required pattern set, tend to take on the

same value. That is, they tend to form either the pair (0, 0) or (1, 1). The latter pairing will be

reinforced by there being a positive weight between the nodes, since each one is then making a

positive contribution to the others activation which will tend to foster the production of a `1'

at the output. Now suppose that the two nodes, on average, tend to take on opposite values.

That is they tend to form either the pair (0, 1) or (1, 0). Both pairings are reinforced by a

negative weight between the two nodes, since there is a negative contribution to the activation

of the node which is `o�' from the node which is `on', supporting the former's output state

of `0'. Note that, although the pairing (0, 0) is not actively supported by a positive weight

per se, a negative weight would support the mixed output pair-type just discussed.

These observations may be encapsulated mathematically in the following way. First

we introduce an alternative way of representing binary quantities. Normally these have been

denoted by 0 or 1. In the polarised or spin� representation they are denoted by -1 and 1

respectively, so there is the correspondence 0 $ �1; 1 $ 1. Now let v
p

i
; v

p

j
be components

�This name is derived from the fact that Hop�eld nets have many similarities with so-called spin glasses

in physics, the prototypical example of which is a collection of magnetic domains whose polarisation of �1 is

determined by the average spin of the electrons in each domain
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of the pth pattern to be stored where these are in the spin representation. Consider what

happens if the weight between the nodes i and j is given by

wij =
X

p

vp

i
vp

j
(1)

Where the sum is over all patterns p to be stored. If, on average, the two components

take on the same value then the weight will be positive since we get terms like 1 � 1 and

�1 � �1 predominating. If, on the other hand, the two components, on average, take on

opposite values we get terms like �1 � 1 and 1 � �1 predominating which gives a negative

weight. This is just what was required according to the arguments given above. Equation

(1) is therefore the storage prescription used with Hop�eld nets. Note that, the same weights

would accrue if we had tried to learn the inverse of the patterns formed by taking each

component of every pattern and changing it to the opposite value. The net therefore, always

learns the patterns and their inverses.

1.2 The Hebb rule

The use of (1) which is an algorithm or recipe for �xing the weights without adapting to

a training set may appear to run counter to the ideas being promoted in the connectionist

cause. It is possible, however, to view the prescription in (1) as a short-cut to a process of

adaptation which would take place if we were to obey the following training algorithm

1. present the components of one of the patterns to be stored at the outputs of the corre-

sponding nodes of the net.

2. If two nodes have the same value then make a small positive increment to the inter-

node weight. If they have opposite values then make a small negative decrement to the

weight.

Steps 1) and 2) then get repeated many times with a di�erent pattern selection in 1).

Symbolically step 2) (which is the learning rule) may be written

�wij = �v
p

i
v
p

j
(2)

where, as usual � is a rate constant and 0 < � < 1. It is clear that the storage

prescription is just the result of adding all the weight changes that would accumulate under

this scheme if enough pattern presentations were made. The rule in (2) is one of a family

of rules known as Hebb rules after D. O. Hebb. The characteristic of such a rule is that it

involves the product of a pair of node activations or outputs.

As a variation, suppose we had used the usual Boolean representation for the compo-

nents x
p

i
so that x

p

i
is 0 or 1 The Hebb rule would now be �wij = �x

p

i
x
p

j
. Interpreting this,

we have that the change in weight is only ever positive and only occurs if both nodes are

�ring (output `1'). This is, in fact closer to the original rule proposed by Hebb (1949) in a

neurophysiological context. In his book The Organization of behaviour Hebb postulated that

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently

takes part in �ring it, some growth process or metabolic change takes place in one or

both cells such that A's e�ciency, as one of the cells �ring B, is increased.
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That is, the correlation of activity between two cells is reinforced by increasing the

synaptic strength (weight) between them. Simpson (course book) contains a list of Hebb rule

variants.

1.3 Using the delta rule

We may draw the connections in, say, a 3 node Hop�eld net as follows.

1 2 3

1 2 3

Nodes

Distribution
terminals

is equivalent
to... 1

2

3

3 node Hop�eld net as feedforward with recurrence

Each node may now be thought of as taking part in some input- output function between

the distribution terminals and the node outputs. They may therefore each be trained with

the delta rule. If the corresponding training set for each one is linearly separable then the

set of stable states may be learnt. However, there is no guarantee now that wij = wji. The

change in energy at each node update is now no longer necessarily less than or equal to zero.

The consequence is that, given the stable states have been trained, the system moves through

state space with decreasing error towards a stable state but has, superimposed on this, some

noise.

Energy

time

always decreasing or the same

Energy

time

may go up or down

Symmetric Asymmetric

energy v time for symmetric and asymmetric nets
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2 Storage capacity

How good is the storage prescription (1) at storing the patterns so that they are stable states?

Clearly, as the number of patterns m increases, the chances of accurate storage must decrease.

In some empirical work in his 1982 paper, Hop�eld showed that about half the memories were

stored accurately in a net of N nodes if m = 0:15N . The other patterns did not get stored as

stable states. In a more rigorous piece of analysis McCliece et al. (1987) showed theoretically

that, if we require almost all the required memories to be stored accurately, then the maximum

number of patterns m is N=2 logN . For N = 100 this gives m = 11.

Suppose a pattern which was required to be stored did not, in fact produce a stable

state and we start the net in this state. The net must evolve to some stable state and this is

usually not related to any of the original patterns used in the prescription. The stable state

represents a spurious energy minimum of the system - one that is not there by design.

3 The analogue Hop�eld model

In a second important paper (Hop�eld, 1984) Hop�eld introduced a variant of the discrete

time model discussed so far which uses nodes described by their rate of change of activation.

This kind of node was discussed in the last part of lecture 1 but we review it here. Denote

the sum of excitation from other nodes for the j node by sj so that

sj =
X

i

wjixi (3)

then the rate of change of activation daj=dt is given by

daj

dt
= ksj � caj (4)

here, k and c are constant. The �rst term (if positive) will tend to make the activation

increase while the second term is a decay term (see lecture 1). The output yj is then just the

sigmoid of the activation as usual. Hop�eld also introduced the possibility of external input

at this stage and a variable threshold.

In the previous TLU model, the possible states of an N node net are just the corners

of the N-dimensional hypercube. In the new model, because the outputs can take any values

between 0 and 1, the possible states include now, the interior of the hypercube. Hop�eld

de�ned an energy function for the new network and showed that if the inputs and thresholds

were set to zero, as in the TLU discrete time model, and if the sigmoid was quite `steep', then

the energy minima were con�ned to regions close to the corners of the hypercube and these

corresponded to the energy minima of the old model.

There, however, are two advantages of the new model. The �rst, is that the use of

the sigmoid and time integration make more contact possible with real biological neurons.

The second is that it is possible to build the new neurons out of simple, readily available

hardware. In fact, Hop�eld writes the equation for the dynamics - eqn (4) - as if it were

built from an operational ampli�er and resistor network. This kind of circuit was the basis of

several implementations - see for example Graf et al. (1987).



Neural Nets 6 5

4 Combinatorial optimisation

Another innovation made by Hop�eld was to show how to solve large combinatorial optimi-

sation problems on neural nets (Hop�eld and Tank, 1985). The classical example of this is

the so- called Travelling salesman Problem (TSP). Here, a travelling salesman has to visit

each of a set of cities in turn in such a way as to minimise the total distance travelled. Each

city must be visited once and only once. This kind of problem is computationally di�cult

in a technical sense (NP-complete) in that the time to solution scales with the number cities

faster than the time t raised to any �xed power and therefore might scale like et.

The solution of the TSP consists of a sequence of cities. The problem for N cities may

be coded into an N by N network as follows. Each row of the net corresponds to a city. The

position of the city in the solution sequence is given by putting a `1' at the corresponding place

in the row and 0's everywhere else in that row. Thus, if the city corresponding to row 5 was

7th in the sequence there would be a 1 in the 7th place of the 5th row and zeros everywhere

else. Note that most states of the net do not correspond to valid tours - there must be only

one `1' per row. The problem then, is to construct an energy function (and hence a set of

weights) which lead to stable states (states of lowest energy) of the network that, not only

express valid city tours, but which also are tours of short length. The validity criterian results

in negative weights (inhibition) between nodes in the same row, and between nodes in the

same column. The path-length criterion leads to inhibition between adjacent columns (cities

in a path) proportional to the path length between the cities (row positions). The net is now

allowed to run until an energy minimum is reached which should now correspond to a solution

of the problem.
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