
5: Associative memories - the Hop�eld net

Kevin Gurney

Dept. Human Sciences, Brunel University

Uxbridge, Middx. UK

1 The nature of associative memory

`Remembering' something in common parlance usually consists of associating something with

a sensory cue. For example, someone may say something, like the name of a celebrity, and

we immediately recall a chain of events or some experience related to the celebrity - we may

have seen them on TV recently for example. Or, we may see a picture of a place visited in

our childhood and the image recalls memories of the time. The sense of smell (olfaction) is

known to be especially evocative in this way.

On a more mundane level, but still in the same category, we may be presented with a

partially obliterated letter, or one seen through a window when it is raining (letter + noise)

and go on to recognise the letter.

slide of `T's

1



Hop�eld 1 2

The common paradigm here may be described as follows. There is some underlying

collection of data which is ordered and interrelated in some way and which is stored in memory.

The data may be thought of, therefore, as forming a stored pattern. In the recollection

examples above, it is the cluster of memories associated with the celebrity or the phase in

childhood. In the case of character recognition, it is the parts of the letter (pixels) whose

arrangement is determined by an archetypal version of the letter. When part of the pattern

of data is presented in the form of a sensory cue, the rest of the pattern (memory) is recalled

or associated with it. Notice that it often doesn't matter which part of the pattern is used as

the cue, the whole pattern is always restored.

Conventional computers (von Neumann machines) can perform this function in a very

limited way. The typical software for this is usually referred to as a database. Here, the

`sensory cue' is called the key which is to be searched on. For example, the library catalogue

is a database which stores the authors, titles, classmarks and data of publication of books

and journals. We may search on any one of these discrete items for a catalogue entry by

typing the complete item after selecting the correct option from a menu. Suppose now we

have only the fragment `ion, Mar' from the full title `Vision, Marr D.'. There is no way that

the database can use this fragment of information to even start searching. We don't know if

it pertains to the author or the title, and even if we did, we might get titles or authors that

start with `ion'. The kind of input to the database has to be very speci�c and complete.

2 A physical analogy with memory

The networks that are used to perform associative recall are speci�c examples of a wider

class of physical systems which may be thought of as doing the same thing. This allows

the net operation to be viewed as a the dynamics of a physical system and its behaviour to

be described in terms of the network's `energy'. Consider a bowl in which a ball bearing is

allowed to roll freely

bowl and ball bearing in 3D

This is more easily drawn using a 2D cross section

2d X-section of bowl

Suppose we let the ball go from a point somewhere up the side of the bowl with, possibly,

a push to one side as well. The ball will roll back and forth and around the bowl until it

comes to rest at the bottom.



Hop�eld 1 3

The physical description of what has happened may be couched in terms of the energy

of the system. The ball initially has some potential energy. That is work was done to push

it up the side of the bowl to get it there and it now has the potential to gain speed and

acquire energy. When the ball is released, the potential energy is released and the ball rolls

around the bowl (it gains kinetic energy). Eventually the ball comes to rest where its energy

(potential and kinetic) is zero. (The kinetic energy gets converted to heat via friction with

the bowl and the air). The main point is that the ball comes to rest in the same place every

time and this place is determined by the energy minimum of the system (ball + bowl). The

resting state is said to be stable because the system remains there after it has been reached

There is another way of thinking of this process which ties in with our ideas about

memory. We suppose that the ball comes to rest in the same place each time because it

`remembers' where the bottom of the bowl is. We may push the analogy further by giving

the ball a coordinate description. Thus, its position or state at any time is given by the three

coordinates (x; y; z) or the position vector x. The location of the bottom of the bowl, x0

represents the pattern which is stored. By writing the ball's vector as the sum of x0 and a

displacement �x thus, x = x0+�x, we may think of the ball's initial position as representing

the partial knowledge or cue for recall, since it approximates to the memory x0.

If we now use a corrugated surface instead of a single depression (the bowl) we may

store many `memories'.

x1 x2 x3

x1 x2 xnx3{ , , }... are the stored memories

X-section through corrugated surface

If now the ball is started somewhere on this surface, it will eventually come to rest at

the local depression which is closest to its initial starting point. That is it evokes the stored

pattern which is closest to its initial partial pattern or cue. Once again, this is an energy

minimum for the system.

There are therefore two complementary ways of looking at what is happening. One is to

say that the system falls into an energy minimum; the other is that it stores a set of patterns

and recalls that which is closest to its initial state. If we are to build a network which behaves

like this we must include the following key elements

1. It is completely described by a state vector v = (v1; v2; : : : ; vn)

2. There are a set of stable states v1;v2;v1; : : : ;vn These will correspond to the stored

patterns and, in, the corrugated surface example, were the bottoms of the depressions

in the surface.

3. The system evolves in time from any arbitrary starting state v to one of the stable states,

and this may be described as the system decreasing its energy E. This corresponds to

the process of memory recall.



Hop�eld 1 4

3 The Hop�eld net

Consider the network consisting of three TLU nodes shown below

11
-2

-2

1
1

3 node Hop�eld net

Every node is connected to every other node (but not to itself) and the connection

strengths or weights are symmetric in that the weight from node i to node j is the same as

that from node j to node i. That is, wij = wji, and wii = 0 for all i; j.� Notice that the 
ow

of information in this net is not in a single direction as it has been in the nets dealt with so

far. It is possible for information to 
ow from a node back to itself via other nodes. That

is, there is feedback in the network and so they are known as feedback or recurrent nets as

opposed to feedforward nets which were the subject of the Backpropagation algorithm.

The state of the net at any time is given by the vector of the node outputs (x1; x2; x3).

Suppose we now start this net in some initial state and choose a node at random and let it

update its output or `�re'. That is, it evaluates its activation in the normal way and outputs

a `1' if this is greater than or equal to zero and a `0' otherwise. The net now �nds itself either

in the same state as it started in, or in a new state which is at Hamming distance one from

the old. We now choose a new node at random to �re and continue in this way over many

steps. What will the behaviour of the net be? For each state, we may evaluate the next state

given each of the three nodes �res. This gives the following table.

State New state

Number
vector (after node has �red)

x1 x2 x3 Node 1 Node 2 Node 3

0 0 0 0 4 2 1

1 0 0 1 1 3 1

2 0 1 0 6 2 3

3 0 1 1 3 3 3

4 1 0 0 4 6 4

5 1 0 1 1 7 3

6 1 1 0 6 6 6

7 1 1 1 3 7 6

�The weight from node i to node j is sometimes also denoted by w
j
i



Hop�eld 1 5

This information may be represented in graphical form as a state transition diagram.

state transition diagram for 3 node net

States are represented by the circles with their associated state number. Directed

arcs represent possible transitions between states and the number alongside each arc is the

probability that each transition will take place. The states have been arranged in such a way

that transitions tend to take place down the diagram; this will be shown to re
ect the way

the system decreases its energy. The important thing to notice at this stage is that, no matter

where we start in the diagram, the net will eventually �nd itself in one of the states `3' or

`6'. These reenter themselves with probability 1. That is they are stable states - once the

net �nds itself in one of these it stays there. The state vectors for `3' and `6' are (0,1,1) and

(1,1,0) respectively and so these are the `memories' stored by the net.

3.1 De�ning an energy for the net

The dynamics of the net are described perfectly by the state transition table or diagram.

However, greater insight may be derived if we can express this in terms of an energy function

and, using this formulation, it is possible to show that stable states will always be reached in

such a net.

Consider two nodes i; j in the net which are connected by a positive weight and where

j is currently outputting a `0' while i is outputting a `1'.

i j
wij

two nodes in con
ict



Hop�eld 1 6

If j were given the chance to update or �re, the contribution to its activation from i is

positive and this may well serve to bring j's activation above threshold and make it output

a `1'. A similar situation would prevail if the initial output states of the two nodes had

been reversed since the connection is symmetric. If, on the other hand, both units are `on'

they are reinforcing each other's current output. The weight may therefore be thought of as

�xing a constraint between i and j that tends to make them both take on the value `1'. A

negative weight would tend to enforce opposite outputs. One way of viewing these networks

is therefore as constraint satisfaction nets.

This idea may be captured quantitatively in the form of a suitable energy function.

De�ne

eij = �wijxixj (1)

The values that eij take are given in the table below

xi xj eij

0 0 0

0 1 0

1 0 0

1 1 �wij

If the weight is positive then the last entry is negative and is the lowest value in the

table. If eij is regarded as the `energy' of the pair ij then the lowest energy occurs when

both units are on which is consistent with the arguments above. If the weight is negative, the

`11' state is the highest energy state and is not favoured. The energy of the net is found by

summing over all pairs of nodes

E =
X

pairs

eij = �
X

pairs

wijxixj (2)

This may be written

E = �
1

2

X

i;j

wijxixj (3)

Since the sum includes each pair twice (as wijxixj and wjixjxi) and wij = wji; wii = 0.

It is now instructive to see what the change in energy is when a node �res. Suppose

node k is chosen to be updated. Write the energy E by singling out the terms involving this

node.

E = �
1

2

X

i6=k

j 6=k

wijxixj �
1

2

X

i

wkixkxi �
1

2

X

i

wikxixk (4)

Now, because wik = wki, the last two sums may be combined

E = �
1

2

X

i6=k

j 6=k

wijxixj �

X

i

wkixkxi (5)

For ease of notation, denote the �rst sum by S and take the xk outside the sum since it is

constant throughout, then



Hop�eld 1 7

E = S � xk

X

i

wkixi (6)

but the sum here is just the activation of the kth node so that

E = S � xka
k (7)

Let the energy after k has updated be E 0 and the new output be x0

k. Then

E 0 = S � x0

ka
k (8)

Denote the change in energy E 0

� E by �E and the change in output x0

k � xk by �xk, then

subtracting (7) from (8)

�E = ��xka
k (9)

There are now two cases to consider

1. ak
� 0. Then the output goes from `0' to `1' or stays at `1'. In either case �xk � 0.

Therefore �xka
k
� 0 and so, �E � 0

2. ak < 0. Then the output goes from `1' to `0' or stays at `0'. In either case �xk � 0.

Therefore, once again �xka
k
� 0 and �E � 0

Thus, for any node being updated we always have �E � 0 and so the energy of the net

decreases or stays the same. But the energy is bounded below by a value obtained by putting

all the xi; xj = 1 in (3). Thus E must reach some �xed value and then stay the same. Once

this has occurred, it is possible for further changes in the network's state to take place since

�E = 0 is still allowed. However, for this to be the case (�xk 6= 0 and �E = 0) we must

have ak = 0. This implies the change must be of the form 0 ! 1. There can be at most N

(of course there may be none) of these changes, where N is the number of nodes in the net.

After this there can be no more change to the net's state and a stable state has been reached.

Minimum E



Hop�eld 1 8

state transitions to stable state

In the example given above, all state have zero energy except for state 5 which has

energy 2, and the stable states 3 and 6 which have energy -1.

3.2 Asynchronous vs. synchronous update

So far we have allowed only a single node to update or �re at any time step. All nodes

are possible candidates for update and so they operate asynchronously; that is, there is no

coordination between them in time. The other extreme case occurs if we make all nodes �re

at the same time, in which case we say there is synchronous update. To do this, we must

ensure that each nodes previous output is available to the rest of the net until all nodes

have evaluated their activation and been updated. It is therefore necessary to store both the

current state vector and the next state vector. The behaviour is now deterministic; given

any state, a state transition occurs to a well de�ned next state, there being no probabilistic

behaviour. The analysis, in terms of energy changes at each update, given above no longer

applies but there is now a simpli�ed type of state diagram in which only a single arc emerges

from any state. This allows us to predict, once again, the general type of behaviour. In

particular, state-cycles occur again but now there is the possibility for multiple-state cycles.

OR

Can’t have...

state diagrams for synchronous update

These may be useful in storing sequences of events or patterns. A little thought will

show that the (single) state cycles remain the same under synchronous dynamics so the single

stored patterns remain the same under both dynamics.

3.3 Ways of inputting information

So far it has been assumed that the net is started in some initial state (the memory cue) and

the whole net allowed to run freely until a state cycle is encountered (recall slide of noisy

`T'). There is another possibility in which some part of the net has its outputs �xed while

the remainder is allowed to update. The part that is �xed is said to be clamped and if the



Hop�eld 1 9

clamp forms part of a state cycle, the remainder (unclamped) part of the net will complete

the pattern stored at that cycle (recall slide of partially correct `T'). Which mode is used will

depend on any prior knowledge about parts of the cue being uncorrupted or noise free.

The problem of how to �x the weights in Hop�eld nets will be dealt with next time.

References

Aleksander, I. and Morton, H. (1990). Neural Computing. Chapman hall.

Quite good on Hop�eld nets and contains a similar example to the one given in these

notes.

Hop�eld, J. (1982). Neural networks and physical systems with emergent collective computa-

tional properties. Proceedings of the National Academy of Sciences of the USA, 79:2554 {

2588. Hop�eld has another, related, model which uses continuous outputs. Beware when

reading the literature which model is being discussed.

McEliece, R., Posner, E., Rodemich, E., and Venkatesh, S. (1987). The capacity of the hop�eld

associative memory. IEEE Transactions on Information Theory, IT-33:461 { 482.

There are many papers on this area, but this has some non- technical material near the

beginning before getting into the welter of maths needed for this kind of analysis.


