
9: Cubic nodes (contd.) and Reward Penalty

training

Kevin Gurney

Dept. Human Sciences, Brunel University
Uxbridge, Middx. UK

This lecture deals with training nets of cubic nodes and introduces another major (quite

general) algorithm - Reward Penalty. Insight into how we might train nets of cubic nodes is

provided by considering the problems associated with generalisation in these nets. We then

go on to consider feedback or recurrent nets from the point of view of their implementing

iterated feedforward nets (recall this discussion in the case of Hop�eld nets). Although the

discussion here centres on cubic nodes, it provides insight into recurrent nets quite generally.

Reward Penalty is introduced and is shown to apply to cubic as well as semilinear nodes.

1 Generalisation in Cubic Nodes - centres and clus-

tering

First, recall the action of TLUs for comparison. The operation of an n-input TLU on Boolean

vectors is determined by a hyperplane passing through the n-cube, so that all vectors on one

side of this plane will produce a `1', while the others generate a `0'. Suppose a TLU has been

trained to classify two input vectors. Every other possible input pattern will now be classi�ed

according to the node's hyperplane and there is automatic generalisation across the whole

input space. (Recall the training of a 2-input TLU with only 2 vectors).

Consider now, a cubic node which, in the untrained state, has all sites set to zero. The

output to any vector will be totally random with there being equal probability of a 1 or a 0.

If this node is now trained on two (Boolean) vectors, only the two sites addressed by these

will have their values altered; any other vector will produce a random output and there has

been no generalisation. We shall call sites addressed by the training set centre sites or centres.

In order to promote Hamming distance generalisation, sites close to the centres need to be

trained to the same or similar value as the centres themselves. That is, there should be a

clustering of site values around the centres. This is true in both feedforward and recurrent

cube- based nets and there are various ways of achieving this which are discussed later. The

situation is shown schematically in the diagram attached.

1

Neural Nets: 9 2

Cell of 1’s Cell of 0’s

[slide of Voronoi tessellation]

Here, the extreme case is shown where the entire cube has been partitioned and no sites

remain untrained. This algorithm for doing this has led to a Voronoi tessellation of cube,

where the value a site takes on is determined by the value of its nearest centre; sites equidistant

from opposite centres remain at 0. Training can now be seen as a two stage process; �rst

centre sites have to be established according to the training set and then clusters developed

around them. Before looking at ways of doing this, however, it is instructive to look more

closely at the way clustering may help recurrent nets in auto-associative pattern recall. �

It is useful at this stage to summarise certain aspects of cubics nodes by making a

comparison with the more usual semilinear weighted variety

� Cubic nodes allow greater functionality than semilinear nodes and therefore may be

expected to implement some problems with fewer nodes.

� Cubic nodes have a ready implementation in RAM

� Cubic nodes do not exhibit intrinsic generalisation; they must be coerced to do so.

Compare with linear dichotomy of TLUs

� The resources required for cubic nodes increases exponentially (number of site values

varies like 2n). May require use of MCUs.

2 Recurrent nets of cubic nodes

Although the discussion here centres on cubic nodes, it provides insight into recurrent nets

quite generally.

3 The Action of Well-Trained Recurrent Nets

We will limit the discussion here to the case where the unit output function is a hard limiter or

very steep sigmoid so that any non-zero site value gives rise to a deterministic output. This

�
Just as in the Hop�eld nets in the `A', `B' simulation demo.

Neural Nets: 9 3

clari�es the argument which may later be quali�ed to take into account any probabilistic

behaviour. The dynamics are also supposed, in the �rst instance, to be synchronous (all

nodes update at the same time).

It is useful to think of a recurrent net performing pattern recall as iterating an input-

output relationship. This is made explicit by `unfolding' the net into a feedforward one,

obtained by breaking the feedback loops and sending signals through a sequential iteration

of hardware rather than through the same physical units. This was alluded to in the lectures

on Hop�eld nets but is restated here in the speci�c context of synchronous dynamics. A key

component here is the use of delay or bu�ering elements (or temporary storage/latches) to

avoid signal `racing'. These are shown below

D
input x output y

‘clock’

[D-type latch]

Their operation is very simple. Upon the application of a `store' or `clock' signal, the

output of the device becomes equal to its input. Any alteration of the input has no a�ect on

the output until another clocking signal is received. Now consider the (usual) 3 node network

shown below.

[Recurrent 3 node net]

In order to run this synchronously, we must store the previous state while evaluating the

next state of the net. This may be done using a set of D-type temporary storage elements.

These are not shown explicitly in the above representation but are shown in the network

redrawn as a layered structure below.

Neural Nets: 9 4

1 2 3

1 2 3

Nodes

D D D

D-type latches

[3 node net redrawn in layered form]

The state of the net is given by the contents of the Delay elements. To �nd the next

state, the nodes process their inputs from the D-types, output the new values and then the

D-type are `clocked' to store the new state. This process is iterated inde�nitely or until a

single-state cycle has been reached. This iteration may be done using the same physical

hardware, by feeding back the output as shown above, or by feeding the output forward into

a replica of the same hardware as shown below.

1

1

2

2

3

3

1

1

2

2

3

3
Nodes

(layer 1)

Nodes
(layer 2)

D D DD-type latches

1st iteration

2nd iteration

further
iterations

inputs

[unfolded net]

The processing which takes place in the kth time step in the recurrent net now takes

place at the kth layer of the feedforward net.

Neural Nets: 9 5

We now consider the processing of an initial state u (`input' in the unfolded net) which

is close in Hamming distance to a trained state cycle v. Suppose the net has well clustered

nodes; that is each centre is surrounded by a cluster of similar valued sites to the centre value

itself. In the ideal case, starting from a pattern u close to a member v of the net's training

set, the latter is recalled after one time step (single layer in the unfolded net). This happens

because, although some of the sites addressed in some nodes are not centres, they are still

su�ciently close to the desired centres to fall within the clusters associated with them and

therefore give the same value as the centres themselves. In general, however, it will take

several transitions (layers) to do this since some addressed sites will fall outside the relevant

clusters. Thus, after one transition (layer), u will have been transformed into u0, where the

latter has more components in common with v than u. This has occurred because enough

sites addressed by u are in the clusters associated with the centres of v and hence have a

similar value. In subsequent transitions (layers) the same occurs but with fewer sites being

visited which are outside the relevant clusters (or those of the correct value). The number of

these erroneous sites should decrease to zero as the net moves through state-space.

A similar argument may be applied to the operation of recurrent nets of TLUs (e.g.

Hop�eld nets) but here the clusters are restricted to two regions of the n-cube which are

linearly separable.

3.1 Training recurrent nets

3.1.1 Training centres

It is a simple matter to enforce a state cycle in a feedback network. We force or clamp the

Delay latches to the desired state and train each node so that its output is just equal to the

value on its corresponding latch. The sites addressed during training are, of course, centre

sites. Note that there may be con
ict between the training required for di�erent vectors.

This will occur when there is a component subset of a vector, forming the address to a node,

which is the same as the corresponding subset of another vector, and the node is supposed

to give opposite outputs in each case. For example, we couldn't train the 3-node net to the

two states (001) and (000) since node 3 is required to give opposite outputs in each case to

the address (00). To a lesser degree, the problem will become manifest if there are centres of

opposite value which are close together. This leads to small clusters around these centres and,

as the problem grows, the cube becomes `fragmented'. These di�culties may be overcome in

the following way.

Suppose that we add units to the net. It may now be possible to augment the original

training vectors to include components on the new units so that centre value con
icts are

removed and fragmentation reduced. Thus, in the 3-node net, adding a hidden node (labelled

4, say) which takes on di�erent values for each of the con
ict-producing vectors, will allow

the two (augmented) vectors (0010) and (0001) to be learnt (the values of node 4 are in

italics). These units are properly regarded as hidden since we are not interested in their

vector components per se and may not impose these from outside; rather, the net should

`discover' them for itself. In terms of state-space, hidden units are being used to prevent

overlap of centres of attraction and helping make each basin of attraction as large as possible.

This process of centre optimisation may be likened to a physical process where centres

Neural Nets: 9 6

are allowed to move over the vertices of the cube and are subject to inter-centre forces. By

making unlike centres repel we aim to avoid cube fragmentation and con
ict. As in a physical

system, the forces may be de�ned via a potential energy function. The problem then reduces

to a function minimisation and may be tackled with simulated annealing. Further details may

be found in (Gurney, 1989) together with simulation examples.

3.1.2 Developing site clusters

The most straightforward way to do this is to suppose that the net is endowed with enough

processing ability to perform the Voronoi tessellation algorithmically. This will result in a net

with site values �Sm within cells and 0 at any sites on cell boundaries. This is an o�-line

technique in that it is not naturally done by the intrinsic neural hardware during training.

Further details may be found in (Gurney, 1989; Gurney, 1992b). Aleksander (1991) has

independently suggested a similar technique and embodied it in the so-called gRAM node.

Another possibility is to present noisy copies of the training set, thereby visiting sites

close to true centres. This has been the basis of methods developed by Milligan (1988) who

describes the process as one of modifying the net's state-space structure. It may be done

naturally using an enhancement of the node's architecture described in (Gurney, 1992a).

4 Reward Penalty training

Consider a single node which has stochastic output. It may be semilinear or cubic, the only

requirement is that it gives a boolean output which depends on the activation stochastically

according to some nonlinear law like the sigmoid. Suppose that, just as for the delta rule,

there is a set of input-output pairs so that each vector is associated with a 0 or 1. On

applying a vector and noting the output, we compute a signal which is `1' (`Reward') if the

node classi�ed the input correctly, and `0' (`Penalty') if it classi�ed incorrectly. If the node is

rewarded, it adjusts its internal parameters (weights or site values) so that the current output

is more likely with the current input. If, on the other hand, the node is penalised, it adjusts

its parameters so that the current output is less likely. Speci�cally, for a stochastic semilinear

node, the change in the weight �wi on input i

�wi =

(
�[y � �(a)]xi if r = 1

��[1 � y � �(a)]xi if r = 0
(1)

Here � is a learning rate, as usual, and � is a constant which governs the relative

importance of penalising. Empirically, � values of around 0.2 appear most successful.

It can be shown (Williams, 1987) that this leads to a stochastic or noisy gradient

descent. We are using less information than with the delta rule where we explicitly calculated

the error gradient. This means that training will take longer. However, the training rule

works for both hidden and output nodes directly without any modi�cation. Recall that there

was a substantial amount of calculation involved in evaluating the �'s in backpropagation.

There is therefore a tradeo� between the complexity of each training step and the number of

steps needed. Reward-Penalty (RP) also has the bene�t that there is some noise which may

be useful in evading entrapment in local minima. When there is more than one output node

Neural Nets: 9 7

it is convenient to de�ne an error e which is normalised to the range [0,1] and then de�ne the

probability of rewarding as 1� e

Barto and Jordan (1987) have successfully used RP in training nets of semilinear nodes.

In fact, they train the output layer with the delta rule and the hidden layer with RP. This is

sensible since the amount of computational overhead in the delta rule is small and it greatly

increases the rate of learning overall. I (Gurney, 1989; Gurney, 1992a) showed that the above

learning rule led to convergence for cubic nodes by adapting the proof of Williams (1987).

Aleksander and Myers (1988) have developed an algorithm with an RP `
avour' which they

use to train nets of PLNs. Work is actively being pursued in developing hardware to train nets

of MCUs using this algorithm (Hui et al., 1993; Bolouri et al., 1994) and the �rst generation

of such chips has now been fabricated and tested (see poster in prefab 3).

Neural Nets: 9 8

References

Aleksander, I. (1991). (not sure of chapter title). In Eckmiller and Hartmann, editors, Parallel

Processing in Neural Systems and Computers,, pages 2 { 5. North Holland.

Barto, A. and Jordan, M. (1987). Gradient following without backpropagation in layered

networks. In 1st Int. Conference Neural Nets, San Diego, volume 2.

(I have this).

Bolouri, H., Morgan, P., and Gurney, K. (1994). Design, manufacture and evaluation of a

scalable high-performance neural system. Electronics Letters, 30:426.

Gurney, K. (1989). Learning in networks of structured hypercubes. PhD thesis, Dept. Elec-

trical Engineering, Brunel University, Uxbridge, Middx, UK. Available as Technical

Memorandum CN/R/144.

Gurney, K. (1992a). Training nets of hardware realisable sigma-pi units. Neural Networks,

5:289 { 303.

Gurney, K. (1992b). Training recurrent nets of hardware realisable sigma-pi units. Interna-

tional Journal of Neural Systems, 3:31 { 42.

Hui, T., Morgan, P., Gurney, K., and Bolouri, H. (1993). A cascadable 2048-neuron VLSI

arti�cial neural network with on-board learning. In Aleksander and Taylor, editors,

Arti�cial Neural Networks 2, pages 647 { 651. Elsevier.

Milligan, D. (1988). Annealing in ram-based learning networks. Technical Report CN/R/142,

Dept. Electrical Engineering, Brunel University.

Myers, C. and Aleksander, I. (1988). Learning algorithms for probabilistic neural nets. In 1st

INNS Annual Meeting.

Williams, R. (1987). Reinforcement-learning connectionist systems. Technical Report NU-

CCS-87-3, Northeastern University Boston.

