
Abstract
We present open research Datalog-system. Datalog-system is capable to evaluate

programs of Datalog, language of logic programming of databases. The fundamental feature of
Datalog is capability to express recursion. One of the main features of our system is the
functional approach to system realization. Datalog-system is written using programming
language Scheme. Our system is loosely coupled with relational DBMS.
Introduction

One of lacks of traditional query languages to relational databases is their insufficient
expressiveness. With usage of relational algebra is quite problematic to write to the database the
arbitrary recursive query and to receive outcome. Datalog is the language of logic programming
which has the greater expressiveness in matching with data definition languages and data
manipulations of systems of databases.

At the same time, systems of logic programming do not provide technology of
management large, reliable, permanent stored data sets with multiple access. Natural expansion
of logic programming and management of databases consists in construction of the systems
located on crossing of these two areas. Such systems are based on use of logic programming as
language of queries and connect a formulation of queries and restrictions in style of logic
programming to technology of databases for effective and reliable storing the data in a main
memory.

Let's give informal conception how logic programming can be used as a query language,
it is meant, that the reader is familiar with main concepts of logic programming. The foundation
of a material of introduction is [1]. For a simplicity of perception in Figure 1 correspondences of
concepts of logic programming and databases represented.

Concepts of databases Concepts of logic programming
Relation Predicate
Attribute Predicate’s argument
Tuple Ground clause (fact)
View Rule
Query Goal
Restriction Goal (logic value)

Figure 1
Let's consider a relational database with relation PARENT (PARENT, CHILD). The

tuple of relation PARENT contains pairs the subjects who are taking place in the relation the
parent - the child. Let the database will consist of the facts: {parent (john, jeff), parent (jeff,
margaret), parent (margaret, annie), parent (john, anthony)}.

The query « who children of John? » expresses with the help of the following Datalog’s
goal:

? – parent (john, X).
Expected as a result of calculation of this query to a database the answer:
 X = {jeff, anthony}.
Rules can be used for construction intensional databases (IDB) from extensional

databases (EDB). EDB is simply relational database. In our example it includes relation
PARENT. IDB is formed from EDB for of the rules determining its contents, instead of obvious
storage of its tuples. For example - relation ANCESTOR includes as tuples all pairs an ancestor -
the descendant, starting from parents:

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
Let's try to give the answer to a problem: «what does the Datalog program evaluate? ».

We consider the program on Datalog the query operating above the extensional database and
computing some result. Formally the result of the program of Datalog P applied to EDB E, will

consist of all facts in issue which are logical consequence of a set of clauses and which
predicate characters belong to in IPred

EPU
}|)(|{)(GEPGEP =∪=Θ .

 Bypassing a set of formal assertions, we shall try to show, how the program of Datalog is
evaluated. We shall consider a rule of Datalog R of sort L0 :- L1, …, Ln and the list of facts F1,
…., Fn. If there is a substitution θ such, that for all 1 <= i <=n ii FL =θ , then from rule R and
from facts F1, …., Fn it is possible to infer the fact θ0L for one step. The infered fact can be the
new fact or already known. This rule is called as elementary products (EP).

For an evaluation of a set of all facts which can be infered for one step using EP, it is
required to look all serially well-ordered sets of all facts in the database and to test, whether it is
applicable by EP. If it is applicable, the new fact needs to be add to result. This procedure we
name infer1.

Now with the help of injected concepts it is possible to show mechanically as the
program on Datalog is evaluated.

ALGORITHM LFP(S)
INPUT: finite set S of clauses of Datalog
OUTPUT: result of the Datalog's program, i.e. a set of all ground facts being

consequences S.
BEGIN
old := ∅ ;
new := FACTS(S);
WHILE new <> old DO
BEGIN
old := new;
new := old FACTS(S) infer1(RULES(S) old) ∪ ∪ ∪
END;
RETURN result
END.
The written algorithm is the algorithm of calculation of the left fixed point of the

Datalog’s program.
 Example. Consider set S of Datalog’s clauses, including following rules R1: anc (X,

Y):-anc (Z, Y), par (X, Z) and R2: anc (X, Y):-par (X, Y) and ground facts: {p (a, b)}, {p (b, c)},
{p (b, d)}, {p (c, e)}.

Let's show the work of LFP, listing of values which are accepted with a variable new at
each iteration. Let newi means value new after i repetitions of cycle.

new0 = FACTS(S) = {{p(a, b)}, {p(b, c)}, {p(b, d)}, {p(c, e)}};
new1 = new0 FACTS(S) infer1(RULES(S)) = new0 {{a(a, b)}, {a(b, c)}, {p(b,

d)}, {p(c, e)}};
∪ ∪ ∪

 new2 = new1 FACTS(S) infer1 (RULES(S) ∪ new1) = new1 {{a(a, c)}, {p(a,
d)}, {a(b, e)}};

∪ ∪ ∪

new3 = new2 ∪ FACTS(S) ∪ infer1 (RULES(S) ∪ new2) = new2 {{a(a, e)}}; ∪
new4 = new3.
The evaluation is realized by algorithm LFP, is named as a bottom-up evaluation since

the algorithm begins with reviewing ground facts of S and realizes driving "up", producing at the
beginning all facts which can be inferred for one step from the lowermost clauses. Then all facts
which can be inferred for one step from the lowermost clauses or from the facts which have been
infered for one step, etc. One step of EP also is named as a direct conclusion because if rules of
Datalog are represented as implication, they are handled in a "direct" direction in sense of the
implication’s sign.

There is also completely other alternative bottom-up (to a direct inference) to an
evaluation of Datalog’s programs. It is shown, as rules of Datalog can be handled in the opposite
direction (since goal clause) by construction a proof tree by top-bottom evaluation. This method

is named also as a backward inference. It is shown also as the known method of the resolution
can be used for the answer to queries of Datalog.

Nonrecursive Datalog in accuracy is equivalent RA+. It is possible to translate each rule
of Datalog in equation RA+ and the back. RA+ (the positive relational algebra) is a relational
algebra without operation a difference. In RA+ we consider only base operations - sample, a
projection, the cartesian product, association and a difference. It means, that Datalog is at least so
expressive, as well as RA+. Thus, full Datalog is strictly more expressive, than RA+ as using
Datalog it is possible to express inexpressible in RA+ recursive queries. For example, relation
ANC can be expressed only with the help of recursive rules or recursive equations RA+. It is fair
for the most of recursive programs of Datalog.

 On the other hand, there are expressions of full relational algebra which cannot be
expressed with the help of Datalog’s programs. These are the queries using the operator
difference. Let there are sets, for example, two binary relations R and S. There is no Datalog -
rule which expresses relation R-S. Nevertheless, such expressions can be written down with the
help of logic denying. Also there are expansions of Datalog calculating queries with negation.
However we consider "pure" Datalog.
Paths of implementation

The overall aim of creation of experimental Datalog-system consists in representation
educational and to a scientific organization of the completed system of the logic programming
basing in language of Datalog which could be used in various directions, including in practical
works and scientific researches of students and experts.

From experimental of the system follows, that there is no need to involving all set of
methods and the algorithms used to Datalog. It was necessary to present any subset of all
methods to understand, what users and on what it is possible to concentrate the further
developments really require. Outgoing from this and limitations of possibilities of creators main
reqiurements to the system have been formulated.

One of key features of the system consists in the functional approach to its
implementation. Functional programming and logic programming - are main paradigms of
declarative programming, therefore their likeness speaks about much. A set of methods of an
evaluation of programs on Datalog can be easily and naturally written with usage of recursion
which is an integral part of functional languages. On the other hand, efficiency of
implementations of languages of functional programming increases, that allows to speak about
practical applications.

The language of implementation became Scheme [2] - a modern dialect of Lisp. Scheme
is the functional programming language, it is simple and has the rich built - in possibilities of
manipulation by complex data structures. Typically that is primary Scheme formed as the
algorithms notation language.

There is a set of implementations Scheme, but one of the most effective compilers of
Scheme language - Bigloo [3] which has several doubtless advantages has been selected. First, as
against many other implementations of Lisp and Scheme, Bigloo is the compiler. Second, it
allows to create executable files for various platforms, including a Windows 2000, XP (without
usage Cygwin) and .NET. Thus, the Datalog - system is platform-independent.

It is impossible to tell unequivocally, what coupling - loose or strong is better. It depends
on many factors. In this realization the Datalog - calculator has been coupled with DBMS by a
principle of ' loose coupling '. The choice of concrete DBMS isn't very important, the system can
be couple with MySQL, PostgreSQL, Oracle. Hovewer Datalog - system has been coupled with
SQLite DBMS [4].

The choice of DBMS for coupling has been made for the benefit of SQLite as it, firstly, is
the most simple and simultaneously possesses rich opportunities in sense of the interface.
Secondy, it is least confusing, it works on small databases (up to 14 Mb) faster others, for
example PostgreSQL or MySQL [<http: // www.sqlite.org/speed.html>].

System Architecture
The architecture of system is submitted in Figure 2. The Datalog - program comes in as

an input. The Datalog - system makes the syntactic analysis of the program, receives internal
representation. Depending on the chosen method of calculation Datalog - rules can be translated

Datalog
program

Datalog-system

Parser

Translator Datalog’s
rules to equations of

relational algebra

Equations of Rules and
queries of
Datalog

relational
algebra

Evaluator

Bottom-up
methods

Top-bottom
methods SQLite

Result

Figure 2 System architecture

to the equations of relational algebra and come in the evaluator.
Before the beginning of calculations the system loads tuples of necessary relations from a

database, using the program interface of DBMS. The received program and queries are
calculated with the help of bottom-up methods (the Jacoby, Gauss-Zeidel, semi-naive) and top-
bottom QSQ (the query - subquery). Then the result is given out.

The parser works, using the following grammar:
<Program> ::= <Statement List>
<Statement List> ::= <Statement> | <Statement List> <Statement>
<Statement> ::= <Rule> | <Query> | <Processing Instruction>
<Processing Instruction> ::= ! <Instruction>
<Instruction> ::= Edb filename
<Rule> ::= <Predicate> :- <Predicate List> .
<Predicate> ::= constant (<Term List>)
<Term List> ::= <Term> | <Term List>, <Term>
<Term> ::= constant | <variable>
<variable> ::= identifier | _
<Predicate List> ::= <Predicate> | <Predicate List>, <Predicate>
<Query> ::= ? <Predicate List> .
The line starting with ';' is the comment.

Benchmarks and analysis of the results
At present in Datalog - system there is no strategy of application of the certain computing

method at different programs and queries. Therefore comparative testing computing methods has
been carried out.

Benchmarking of algorithms was carried out on three programs. Results are represented
as tables and approximating schedules. In the first column of tables there is number of
experience, in the second and the third the initial and inferred amount of the facts is showed
accordingly. For EDB with several relations (an example 2 and 3) the total amount of the facts is
resulted. In the staying columns - spent time for different algorithms. Calculations were made
under Linux RedHat 8.0 on processor Intel Pentium IV 1.5Ghz, 256 Mb RAM.

Program L1:
anc(X, Y) :- anc(X, Z), par(Z, Y).
anc(X, Y) :- par(X, Y).
? anc(X, Y).

25 iterations of experiences, in each of which have been carried out were random formed
EDB. In the first EDB there were 10 facts, in 2-nd - 20, etc. In 25 EDB there were 250 initial
facts. The facts represent pairs integers, each of numbers in this case changed from 1 up to 80.
Thus, the maximal number of the facts in given EDB equally 6400. Results of five experiences
are resulted in Table 1. Method QSQ was applied here to the query? anc (X, Y). Here it returns
all predicate anc.

Total amount of facts Measured time (seconds) № Initial Inferred Jacobi Gauss-Z QSQ
1 10 5 0 0 0 0
5 50 49 0.02 0.02 0.01 0.02
10 100 390 0.61 0.6 0.28 0.57
15 150 3753 57.01 57.28 20.89 60.00
20 200 4989 92.51 91.88 29.24 95.16
25 250 5602 115.49 110 34.9 115.44

Table 1 Evaluation of program L1
On the average operating times of methods Гаусса-Зейделя, semi-naive and QSQ make

in percentage terms relatively the Jacoby accordingly 97.9 %, 32.62 % and 103.54 %. Clearly,
that the semi-naive method outstrips methods of the Jacoby and Гаусса-Зейделя. As program L1

contains only one intensional predicate, the Gauss-Zeidel approximately also is effective, as well
as the Jacoby. QSQ it is created for calculation of the marked queries, therefore it lags behind all
others on the query containing only variables.

Table 2 is called for the analysis of efficiency QSQ on the marked queries to L1. The
same are used EDB.

Total amount of facts Measured time (seconds) № Initial Inferred Relevant Jacobi Gauss-Z s/n QSQ
1 10 5 0 0 0 0 0
8 50 49 22 1.21 1.21 0.56 0.74
10 100 390 13 0.61 0.6 0.28 0.21
15 150 3753 61 57.04 57.31 20.92 25.91
20 200 4989 72 92.54 91.91 29.27 41.15
25 250 5602 75 115.53 110.04 34.94 26.69

Table 2 Evaluation of program L1, ? anc(X, “11”).
Testing has shown, what at the query? anc ("11", "11") to program L1 operating time

QSQ almost 0 whereas other methods remains approximately same, as well as in Table 1. The
result is easily explained to that QSQ practically at once chooses the unique necessary fact, and
other methods at any query all over again calculate the program, and then choose the necessary
facts. Also it has been noticed, that time of performance of any simple query (from one
subquery) remains to constants (to the same IDB).

On Figure 3 dependences of performance time of the query ? anc (X, "11") from the ratio
of number of the relevant facts to total number of the IDB facts are shown. Approximation was
carried out by all experiences by linear functions. Benchmarking was carried out only semi-naive
and QSQ methods as from Table 2 it is visible, that the Jacoby and Гаусса-Зейделя essentially
lag behind.

semi-naive

QSQ

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

0,0000 0,0100 0,0200 0,0300 0,0400 0,0500

ratio of relavant facts

tim
e

(s
ec

on
ds

)

Figure 3 Evaluation of program L1, ? anc(X, “11”).

Interpretation is simple: the more the ratio of the relevant facts, the worse QSQ works
and the better semi-naive works. Top-bottom method QSQ wins for semi-naive in a case, when a
ratio of the relevant facts from a total number infered less than the defined level. Thus, having
any a priori knowledge of allocation of values in IDB and knowledge (empirical) this threshold
value it is possible to draw conclusions about the strategy of application of this or that method to
various programs.
Conclusion

We have presented the loosely coupled Datalog - system, storing the facts in the
lightweight SQLite DBMS, parsing program on Datalog and calculating this program using four
methods: the Jacoby, Gauss-Zeidel, semi-naive and QSQ.

Comparative testing computing methods during which the coordination of practical
results with the theory has been checked up were made.

Possible perspective directions of work are construction of the system realizing Datalog
with negations, parallel realization of computing methods with the purpose of use on clusters.
Integration of Datalog - system with more respectable DBMS, for example, DB2 or Oracle
DBMS is possible too.

Literature:

[1] S. Ceri, G. Gottlob, L. Tanca: Logic Programming and Databases, Springer, 1990.
[2] R. Kelsey, W. Clinger, J. Rees (eds.), Revised5 Report on the Algorithmic Language

Scheme, Higher-Order and Symbolic Computation, Vol. 11, No. 1, September, 1998.
http://www.schemers.org/Documents/Standards/R5RS

[3] Bigloo Homepage
 http://www-sop.inria.fr/mimosa/fp/Bigloo.

[4] SQLite Homepage
http://www.sqlite.org/

[5] R. Ramakrishnah, J. Ullman. A Survey of Research on Deductive Database Systems.
1993

[6] Rajs. Sunderraman, Rajar. Sunderraman A Deductive Rules Processor for SQL
Databases. ACM, 1998.

http://www.schemers.org/Documents/Standards/R5RS
http://www-sop.inria.fr/mimosa/fp/Bigloo
http://www.sqlite.org/

	Abstract
	Introduction
	Paths of implementation
	System Architecture
	Benchmarks and analysis of the results
	Conclusion
	Literature:

