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Abstract 
This paper presents the TREAT match algorithm for 
AI production systems. The TREAT algorithm intro- 
duces a new method of state saving in production sys- 
tem interpreters called conflict-set support. Also pre- 
sented are the results of an empirical study comparing 
the performance of the TREAT match with the com- 
monly assumed best algorithm for this problem, the 
RETE match. On five different OPS5 production sys- 
tem programs TREAT outperformed RETE, often by 
more than fifty percent. This supports an unsubstan- 
tiated conjecture made by McDermott, Newell and 
Moore, that the state saving mechanism employed 
in the RETE match, condition-element support, may 
not be worthwhile. 

I. Introduction 

Production systems are the basis of many expert sys- 
tems [Brownston et al., 19851. The growing use of 
expert systems is well known as is their large compu- 
tational requirements. Thus it is important to search 
for more efficient ways to execute production system 
programs. 
In general, a production system is defined by a set 
of rules, or productions, that form the production 
memory together with a database of current asser- 
tions, called the work&g memory (WM). Each pro- 
duction has two parts, the left-hand side (LHS) and 
the right-hand side, (RHS). The LHS contains a con- 
junction of pattern elements that are matched against 
the working memory. The RHS contains directives 
that update the working memory by adding or re- 
moving facts, and directives that affect external side 
effects, such as reading or writing an I/O channel. 
In operation, a production system interpreter repeat- 
edly executes the following cycle of operations: 

1. Match. For each rule, compare the LHS against 
the current WM. Each subset of WM elements 
satisfying a rule’s LHS is called an instantiation. 
All instantiations are enumerated to form the 
conjlict set. 

2. Select. From the conflict set, choose a subset 
of instantiations according to some predefined 
criteria. In practice a single instantiation is se- 
lected from the conflict set on the basis of the 
recency of the matched data in the WM. 

3. Act. Execute the actions in the RHS of the 
indicated by the selected instantiations. 

rules 

In general much of the WM of a production system 
remains unchanged across production system cycles. 
Therefore it is worthwhile for the production sys- 
tem interpreter to incrementally compute the con- 
tents of the conflict set. The RETE match [Forgy, 
19821, briefly outlined in section III , has often been 
assumed to be the best algorithm for this problem. 
However, the literature contains no comparitive anal- 
ysis of the RETE match with any other algorithm 
and a conjecture made by McDermott, Newell and 
Moore[McDermott, Newell and Moore, 19781, sug- 
gests that the state saving mechanism employed in 
the RETE match, condition-element support, may 
not be worthwhile. Section II describes several meth- 
ods for introducing state into a production system 
interpreter, including a new method incorporated 
into the TREAT algorithm called conflict-set support. 
Section IV describes the TREAT algorithm. Section 
V presents the results of an empirical study com- 
paring the performance of RETE and TREAT for 
the execution of five different OPS5 programs. For 
all five programs TREAT required fewer comparisons 
to do variable binding than RETE. In two instances 
TREAT required fewer than half. 

Figure 1 illustrates an OPS5 rule and WM. In the 
LHS of the rule the capital letters represent con- 
stants, the characters in brackets, pattern variables. 
Though not illustrated in the example, condition el- 
ements may be negated. 

A. Relationd atabase Analogy 
A convenient way to describe the primitive operations 
of a production system algorithm is to make an anal- 
ogy to relational database terminology. If the WM 
elements of a production system are considered to be 
tuples of some universal relationship in a relational 
database, then it becomes apparent that the LHS of 
a rule in a production system is analogous to a query 
in a relational database language. 

The constants in a single-condition element may be 
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Figure 1: Example Rule System 

viewed as a relational selection over a database of 
WM. We say a WM element partially matches a con- 
dition element if it satisfies the select operators or 
the intra-condition element pattern contraints. Con- 
sistent bindings of pattern variables between distinct 
condition elements may be regarded as a database 
join operation on the relations formed by the selec- 
tions. The conflict set is the union of the query results 
of each of the rules in the system. 

e traducing State 

A difference between database systems and produc- 
tion systems is that database systems usually com- 
pute queries one at a time over a large database. In 
terms of the analogy, a production system continu- 
ously computes many queries, as many as there are 
rules, over a slowly changing, modest size database. 
To minimize recalculating comparisons on different 
production system cycles production systems algo- 
rithms retain state across cycles. McDermott, Newell 
and Moore [McDermott, Newell and Moore, 19781 
have identified three types of knowledge or state in- 
formation that may be incorporated into a production 
system algorithm. A fourth type, conflict-set support 
is exploited by the TREAT algorithm. In detail these 
are: 

e Condition Membership: Associated with each 
condition element in the production system is a 
running count indicating the number of WM ele- 
ments partially matching the condition element. 
A match algorithm that uses condition member- 
ship may ignore those rules that are inactive. A 
rule is active when all of its positive condition 
elements are partially satisfied. 

a Memory Support: An indexing scheme indicates 
precisely which subset of WM partially matches 
each condition element. By analogy, memory 
support systems explicitly maintain a represen- 
.tation of the relations resulting from the select 
operations. Later this representation will be 
called an alpha-memory. 

Q Condition Relationship: Provides knowledge 
about the interaction of condition elements 
within a rule. By analogy this corresponds to 
explicitly maintaining the intermediate results 
of a multiway join. 

B Conflict Set Support: The conflict set is explic- 
itly retained across production system cycles. 

By doing so, it is possible to limit the search for 
new instantiations to those instantiations that 
contain newly asserted WM elements. 

cl. ermott et al.‘s conjecture 
McDermott, Newell and Moore conjected that the 
cost of maintaining the state required for condition 
relationship exceeds the cost of the comparisons that 
otherwise would have to be recomputed. 

“It seems highly likely that for many 
production systems, the retesting cost will 
be less than the cost of maintaining the 
network of sufficient tests.“[McDermott, 
Newell and Moore, 1978] 

0 or it 
The RETE match[Forgy, 19821 incorporates memory 
support and condition relationship. Until now, no 
work has been done to repudiate or confirm McDer- 
mott et. al.‘s conjecture. Despite that conjecture 
and a lack of any comparative studies of the RETE 
match with any other production system algorithm, 
the RETE match is commonly assumed to be the best 
algorithm for production system matching. 
Briefly, the RETE algorithm compiles the LHSs of 
the production rules into a discrimination network in 
the form of an augmented dataflow network. (See 
Figure 2.) Database operators are used as the opera- 
tors in the dataflow network. The top portion of the 
RETE network contains chains of tests that perform 
the select operations. Tokens passing through those 
chains partially match a particular condition element 
and are stored in alpha-memory nodes, thus forming 
the memory support part of the algorithm. Following 
the alpha-memories are two-input test nodes that test 
for consistent variable bindings between condition el- 
ements. By analogy, the two-input nodes incremen- 
tally compute the join of the memories on their input 
arcs. When a token enters a two-input node, it is 
compared against the tokens in the memory on the 
opposite arc. Paired tokens with consistent variable 
bindings are stored in beta-memories. Tokens that 
propagate from the last beta-memory in the network 
reflect changes to the conflict set. The reader is en- 
couraged to see [Miranker, 1987b] for a more detailed 
explaination. 

A. de0 in 

The advantages of RETE are; the large amount of 
stored state minimizes the number of times two WM 
elements will be repeatedly compared and similar 
rules will compile to similar networks, allowing shar- 
ing of network structures. 
The primary disadvantage of RETE is that when a 
WM element is removed the stored state must be un- 

often requiring the repetition of the precise se- 
of operations that were performed upon its ad- 

dition. Other disadvantages are; the size of the beta- 
memories may be combinatorially explosive, sharing 
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condition elements. The cases concerning positive 
condition elements remain unchanged from the pre- 
vious section. The handling of negated condition el- 
ements is described in the abstract algorithm and in 
detail in [Miranker, 1987b]. Briefly, in the other two 
cases when changed elements partially match negated 
condition elements the condition is temporarily con- 
sidered to be positive and the change acts as a seed 
to create possible instantiations. If the change is an 
addition, instantiations are removed from the conflict 
set. If the change is a deletion, instantiation may be 
entered into the conflict set. 

C. Detailed TREAT Algorithm 
The TREAT algorithm exploits condition member- 

Figure 2: RETE Illustration 

network structure is not advantagous in a parallel 
environment due to contention and/or communica- 
tion costs, to maintain consistent state in the net- 
work RETE must perform extensive computation for 
rules that are inactive, thus not exploiting condition 
support. 
The incentive to develop TREAT was created by the 
difficulties associated with using RETE on parallel 
computers. [Stolfo and Miranker, 1984, Gupta, 19841. 
In a sequential computer RETE tokens may be ma- 
nipulated by simple memory accesses. In a parallel 
computer manipulating tokens can involve contention 
and costly communication steps. 

IV. The T EAT Algorithm 

ship, memory support and conflict set support. All 
the condition elements in a production system are 
numbered. The number associated with a condi- 
tion element is called the condition element num- 
ber (CE-num). Information relevant to condition ele- 
ments is stored in arrays indexed by CE-num. Alpha- 
memories similar to those used in RETE are used to 
form the memory support part of the algorithm, but 
rather than existing amorphously in a network they 
are formed explicitly as a vector, each entry contain- 
ing an alpha-memory. The alpha-memories are bro- 
ken into three partitions: old, new-delete and new- 
add.l The old partition, (old-mem), contains the 
partially-matched elements that have already been 
processed. During the act phase, elements are not 
added to the old-mem but to the memories in the add 
and delete partitions, (new-add-mem and new-del- 
mem). The calculation of the contents of the alpha- 

A. Conflict Set Support 
memory could be done by building the top portion of 
a RETE network. The implementation reported here 

To exploit conflict set support two observations must 
be made. Assume for the moment that there are no 
negated condition elements in the production system. 
If the only action of a fired rule is to add a new WM 
element, then the conflict set remains the same except 
for the addition of new instantiations that contain 
the new WM element. In the example below, adding 
(A 2) results only in instantiations containing (A 2). 
The second observation is that if the only action of 
a fired rule is to delete a WM element, then no new 
rules will be instantiated. Some instantiations may 
become invalide. These will contain the removed WM 
element. 
The essence of the TREAT algorithm is to exploit 
these observations. Additions to WM may be used 
as seeds to initiate a constrained search for new in- 
stantiations. Deletions are processed by examining 
the conflict set directly and removing any instantia- 
tion that contain a deleted WM element. (See Figure 
4.1 

used a hash function whose argument is the value of 
the first attribute in an OPS5 WM element. 
To incorporate condition support, whenever an old- 
mem is updated a test is made to see if its size has 
become zero or nonzero. If the critical change is de- 
tected, the size of each of the old-mems for the rule 
is examined and the set of active rules is updated 
accordingly. 
When an alpha-memory of an active rule is altered 
and the change corresponds to one of the three cases 
where a search for instantiations is required, then the 
search takes place among the changed (new) alpha- 
memory, the old-memories that correspond to the re- 
maining condition elements in the rule. Figure 3 con- 
tains an abstract program for the TREAT algorithm. 

D . 

B. Negated Condition Elements 

Join Optimization 
The join operation is commutative and associative. 
Thus when searching for consistent variable bindings 
the alpha-memories may be considered in any order. 
There are many multiway join optimizations[Ullman, 

Allowing negated condition elements slightly compli- 
cates the algorithm. The TREAT algorithm must 
consider four cases, the addition or deletion of WM el- 
ements that partially match both positive or negated 

lIn the implementations reported here, these are formed by three 
separate vectors. However, a vector of structures would probably 
have resulted in better paging characteristics. 
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1. Act: Set CHANGES to the WM updates required by the 
RHS. 

2. For each WM change in CHANGES do; 
(a) For each condition element, CEi do; 

e If the partial match of the element against CEi is 
successful 
and if addition to working memory 
then add WM-element to new-add-mem[CEi]. 
else add WM-element to new-del-mem[CEi]. 

end for; 
end for; 
Match: Process deletes. 
For each nonempty del-mem do; 

(4 
04 

(4 
(4 

Set cur-ce = CE-num of the selected memory. 
Set old-mem[cur-ce] = old-mem[cur-ce] - new-del- 
mem[cur-ce]. 
If size of old-mem[cur-ce] = 0 then update-rule-active. 
Case: If CE corresponding to the new-del-mem is pos- 
itive or negated. 
. 
1. 

ii. 

Positive: Search conflict set for instantiations con- 
taining the deleted WM-elements. If found remove 
them. 
Negative: If the affected rule is active, then perform 
search for new instantiations by searching new-del- 
mem[cur-ce] and the old-mems that correspond to 
the remaining condition elements that are part of 
the affected rule. Check that the new instantiations 
are not invalidated by elements in old-mem[cur-ce]. 

end for; 
Q. Match: Process adds. 
6. For each nonempty add-mem do; 

(4 
(b) 
(4 

(4 
(4 

(f 1 

Set cur-ce = CE-num of the selected memory. 
Set old-size = the size of old-mem[cur-ce]. 
Set old-mem[cur-ce] = old-mem[cur-ce] + add- 
mem[cur-ce]. 
If size of old-mem[cur-ce] = 0 then update-rule-active. 
If the rule is active, then perform search for new instan- 
tiations by searching new-add-mem[cur-ce] and the 
old-mems that correspond to the CEs of the remaining 
CEs that are part of the affected rule. 
Case: If CE corresponding to the del-mem is positive 
of negated. 
i. Positive: Add these new instantiations to the con- 

flict set 
ii. Negative: Search the conflict set for each of the new 

instantiations and remove them if found. 
end for; 

Figure 3: Abstract Algorithm Illustrating TREAT 

Figure 4: TREAT Illustration 

19821. However, in OPS5 the small size of the alpha- 
memories and the very small number of WM changes 
per cycle, (an average of 2.5), dictates that for an op- 
timization to be useful it must be simple to compute 
and result in a deterministic ordering of the alpha- 
memories. Three orderings were studied. Static- 
ordering, where the alpha-memories where consid- 
ered in the lexical order of condition elements. Seed- 
ordering, where the changed alpha-memory is con- 
sidered first, since in OPS5 these changes are almost 
always small and considering them first will greatly 
constrain the search. The third method based on 
semi-join reductions was not successful and will not 
be detailed. Note that the use of join optmizations 
allows TREAT to be used effectively for other pro- 
duction system languages. If a system is temporally- 
nonredundant the search for instantiations may still 
be performed in a different but still optimal order. 
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E, An Example using TREAT’ 
Figure 4 shows the initial state created by the 
TREAT algorithm as well as the activity during the 
addition and deletion of a WM element (A 2). The 
activities of TREAT and RETE in this case are iden- 
tical except that TREAT does not maintain beta- 
memories. However, the beta-memories do not con- 
tribute constructively to the computation of the new 
instantiation. To be fair, note that for the add exam- 
ple had the WM element partially matched the “C” 
branch of the network RETE would have searched 
only a beta-memory while TREAT would have had 
to search both remaining alpha-memories. For a 
delete, the RETE match must recompute the tokens 
stored in the beta-memories and then delete them. 
TREAT outperforms RETE during deletetions by di- 
rectly updating the alpha-memories and the conflict- 
set. The key issue is; does the number extra compar- 
isons performed by TREAT while searching for in- 
stantiations exceed the number of comparisons per- 
formed by RETE while processing deletions? The 
results of an empirical study of this question are pre- 
sented in the next section. 

v. EAT vs. ETE 

This section presents quantitative measurements of 
identical runs of OPS5 programs on several differ- 
ent OPS5 interpreters. The RETE-based OPS5 in- 
terpreter is the familiar one distributed by Forgy 
from Carnegie Mellon University. The TREAT-based 
OPS5 interpreters were written at Columbia Univer- 
sity. 

A. Synogsis of the 

Five OPS5 programs representing a wide variety of 
characteristics were obtained from diverse sources. 
Some characteristics of these systems are summarized 
in Figure 5. 

MAB: The familiar Monkeys and Bananas pro- 
gram[Brownston et al., 19851. 
Waltz: A set of rules that perform Waltz con- 
straint propagation[Winston, 19791. 
Mapper: The Mapper is program that will assist 
a tourist to navigate Manhattan’s public trans- 
portation system. The Mapper has an extremely 
large WM. The maps for nearly the entire Man- 
hattan bus and subway systems are stored as 
1124 WM elements. 
Mud: A system written at Carnegie Mellon Uni- 
versity to to analyze the castings from oil wells. 
It should also be noted that this is precisely the 
same system used by Gupta [Gupta, 19861 in his 
study of parallelism in OPS5. 
Mesgen: A natural-language program written by 
Karen Kukich at the Univ. of Pennsylvania that 
takes Dow Jones figures and converts them into 
text describing the course of a trading day. 

Number Number Average Cycles Average 
of of WM in test cs 
rules conditions Size run Size 

MAB 13 34 11 14 21 
Mud 884 2134 241 972 
Waltz 33 130 42 71 193 
Mesgen 155 442 34 138 149 
Mapper 237 771 1153 84 595 

Figure 5: Summary of the Gross Characteristics of the 
Studied Systems 

El. counting Comparisons hs 
Variable Bindings 
It has been reported that 90% of the execution time 
of a production system is spent in the match phase. 
Evidence indicates that in the RETE-OPS5 imple- 
mentation the majority of the match time is spent in 
performing variable binding and in maintaining the 
beta-memory nodes [Gupta, 19861. The critical dif- 
ference between the algorithms is the method used to 
handle variable binding. 
The graphs in Figure 6 show the number of compar- 
isons required to do variable binding for each of the 
OPS5 programs for two variations of each algorithm. 
The bars are normalized to the number of compar- 
isons required by execution of the stardard RETE 
implementation. The dark portion of the bars in- 
dicates the number of comparisons required during 
the add cycles, the light portion, the number for the 
delete cycles. 
The RS bars represent the performance of the stan- 
dard release of RETE-based OPS5. The RN bars 
indicate the performance of RETE without sharing. 
We see that sharing does not contribute significantly, 
if at all, to the variable binding phase of the RETE 
match. 
The TN bars represent the performance of TREAT 
without any optimizations. Search is performed in 
lexical order. Depending on the system this version 
of algorithm may perform better or worse than the 
RETE match. Thus, some run-time optimization is 
necessary. 
The TO bars represent the performance of TREAT 
using the seed-ordering heuristic. Inspection of the 
graphs shows that TREAT with seed-ordering always 
performed better than RETE even on a sequential 
computer. Except for the Mapper2 with it’s very 
large WM the algorithm requires roughly half of the 
comparisons required of the RETE match. Note for 
each successful comparison performed by the RETE 
match there is the additional expense of maintaining 
a beta-memory. 

- 

2There is evidence that with the introduction of hashing the per- 
formance of the Mapper would be closer to that of the other systems 
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In many cases TREAT without any optimization out- 
performs the RETE match. With seed-ordering opti- 
mization, TREAT always outperforms RETE. In two 
intances TREAT required less than half of the com- 
parisons to perform variable bindings than RETE. 
This does not consider the additional cost of main- 
taining the beta-memories. Since the algorithms are 
nearly identical in all other respects, it may be con- 
cluded that TREAT is a better production system 
algorithm in both time and space. Further this study 
supports the conjecture made by McDermott, Newell 
and Moore that condition-element support many not 
be worthwhile. 
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