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ABSTRACT

Integrated rule and database systems are quickly moving from
the research laboratory into commercial systems. However, the
current generation of prototypes are designed to work with small
rule sets involving limited inferencing. The problem of supporting
large complex rule programs within database management systems
still presents significant challenges. The basis for many of these
challenges is providing support for rule activation. Rule activation
is defined as the process of determining which rules are satisfied
and what data satisfies them. In this paper we present performance
results for the DATEX database rule system and its novel indexing
technique for supporting rule activation. Our approach assumes
that both the rule program and the database must be optimized syn-
ergistically. However, as an experimental result we have deter-
mined that DATEX requires very few changes to a standard DBMS
environment, and we argue that these changes are reasonable for
the problems being solved. Based on the performance of DATEX
we believe we have demonstrated a satisfactory solution to the rule
activation problem for complex rule programs operating within a
database system.

1 INTRODUCTION

The integration of rule and database systems, sometimes re-
ferred to as an active database, is an important step forward for
both expert systems and database management systems (DBMSS).
Several experimental systems have been developed (Hanson
[1991], McCarthy and Dayal [1989], Sellis, Lin, and Raschid
[1989], Stonebraker, Rowe, and Hiroharna [1990], Widom,
Cochrane, and Lindsay [199 l]). It has been argued that to achieve
rule and database consistency, the only viable approach is to incor-
porate the rules and the rule activation mechanism into the DBMS
(StonebraJcer [1992]). For alerters, triggers, and simple rule sys-
tems this is already being accomplished. In fact, several commer-
cial DBMSS already provide a rule capability (INGRES [1990],
Sybase [1990]). However, the computational and storage demands
of alerters and triggers are trivial. compared to those imposed by
medium to large scale expert systems operating within a DBMS.
Perhaps this is also why so few of the database rule language
projects deal with the hard problem of supporting a general rule
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program environment, one where a large number of complex rules
fire in a cyclic fashion for hundreds or thousands of cycles (or per-
haps indefinitely). Stonebraker has referred to these as “hard ex-

pert systems” and suggests that, due to the enormous demands of
these systems, they will likely remain outside the DBMS for the
foreseeable future. Our work is directed precisely toward support-
ing these complex rule programs inside a tightly integrated data-
base rule environment. The system is caIIed DA~X.

A critical salient feature of hard rule systems, overlooked by
many, is that they are not dynamic. They usually involve an invest-
ment of several man-years for initial development. The cost and
dumtion of problems solved by hard expert systems are commen-
surate with this high development COSLwhich implies a recurring
problem with indefinite life cycle costs (Kerschberg [1987],
Kerschberg [1988]). We agree, even assert, that DBMS supprt of
hard rule systems will require some explicit built-in mechanisms
and will have a permanent effect on the DBMS. The cost and dura-
tion of the problems solved leads users of these systems to provide
significant resources to achieve a solution. Techniques which re-
quire additional or non-standard DBMS support are warranted and
should be investigated. Moreover, these systems present an un-
precedented opportunity for database optimization techniques, es-
pecially multiple query optimization. We believe DATEX
demonstrates that the resources and functionality necessary to sup-
port hard problems are quite reasonable and demonstrate the feasi-
bility of incorporating these programs into a DBMS,

Since performance is the ltilting factor for these hard systems,
we have not been overly concerned with the semantics or syntax of
the rule language. Instead, we have developed an evolutionary se-
quence of rule compilers, activation methods, and execution envi-
ronments. Lessons from each system were derived through the
analysis of a suite of scalable benchmark programs, representative
of expert systems. While the semantics of the rule language can
certainly affect performance, many of the issues are orthogonal,
especially if one assumes a fairly powerful and expressive lan-
guage.

The key aspects of DATEX rule activation are specialized irrdi-
ces,derived from a compile-time analysis of the rule program, and
law matching. The rule activation problem has been defined as de-
termining which rules to activate and when to activate them. This
problem must be addressed whenever a record is added or modi-
fied. Rule activation is assumed to include both the identification
of which rules to attempt to satisfy, and tinding the database
records that actually satisfy those rules, i.e., the rule’s irrstarttia-
Iions. For hard expert systems we assume that rules may allow an

arbitrarily complex join to be specified by the condition elements.
In this environment, rule activation becomes quite challenging,

and can easily imply many multiway joins per database update.
Stonebralcer [1992] suggests a taxonomy of approaches to the rule
activation problem — brute force, discrimination networks, and

marking schemes. Brute force is easily excluded as a viable ap-
proach for large rule programs; it simply is not computationally
tractable. Discrimination networks are used extensively in expert

system shells, However, we have shown that traditional Rete
(Forgy [1982]) and TREAT (Miranker [1990]) discrimination net-
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works are not appropriate for large scale expert systems due to
their excessive space and time requirements, and that they are con-
sistently outperformed in both time and space by LEAPS, our lazy
matching technique (Miranker and Brant [1990], Miranker, Bran~
Lofaso, and Gadbois [1990], Brant, Grose, Lofaso, and Miranker
[1991]). The fundamental weakness of state-saving discrimination
networks like Rete and TREAT is that they do not scale well to
solve large, data-intensive problems. The space required by their
saved state information, and the time to process it, tends to grow as

a polynomial of the size of the base relations (h-ant Grose,
Lofaso, and Miranker [1991]). LEAPS avoids much of the work
and storage done in Rete and TREAT by using reentrant update
sensitive, data streams in rule activation as opposed to eagerly ex-
panding a rule’s entire search space during rule activation. In doing
so, LEAPS is inherently a marking scheme.

Marking hm been used effectively to provide high perfor-
mance in other database rule systems (Stonebraker., Rowe, and
Hirohama [1990]) and is intrinsic to the lazy matching technique
and DATEX. Marking provides an extremely efficient way to iden-
tify the satisfied rules corresponding to a database update and is
usually implemented by bit encoding at the base relation record
level. In DA~X however, indirect markers of several varieties are
used. First an index is built on the join attributes of the rule’s con-
ditions, and markers are kept with the index records to identify
which database records satisfy the constants in the conditions. This
is most appropriate for rule systems that change infrequently. We
call this afiltering indez. Second, an ordered set of tuple identifiers
is kept to indicate the database records that need to be processed
for rule activation. The ordering is based on a given search heuris-
tic. And, third, an ordered set of search vectors, composed of cur-
sors, is kept for each non-empty data stream. These keep the
current entry point for each partially expanded search space corre-
sponding to a rule activation data stream.

In evaluating the efficiency of DKI’EX we believe that the usu-
al database cost metrics, storage space and disk accesses, continue
to be the correct measures. These metrics have been used to guide
our design and experiments. We first present an architectural over-
view of DATEX in section 2, followed by a description of, and a
rationale for, the index used in rule activation. Section 4 presents
the performance Esults and compares them to main-memory im-
plementations. Section 5 summarizes our contributions and de-
scribes current and future directions.

2 DATEX ARCHITECTURE

Figure 1 shows the DATEX architecture. While the current
rule language of DATEX is 0PS5 (Forgy [1981]), an SQL derived

Rule Object Code
Augmented
DB Schema

t t

I Genesis DBMS

I

FIGURE 1. DATEX Architecture

language with object-otiented extensions has been specified and is
being implemented in the next version. In order to facilitate this
change, the role language compiler is designed to create and oper-
ate on an intermediate form that is language independent. Thus,
multiple rule language front-ends can be easily accommodated.
The current underlying DBMS is Genesis, an extensible database
system that provides a high degree of flexibility in a rapid proto-
typing environment (Batory et al. [1988]). It was originally
thought that the rule activation techniques used in DA~X would
require extensive hooks and modifications to the DBMS. However,
it turns out that few extensions are needed to the standard relation-
al DBMS in order to provide support for DAXEX. In fact, a stan-
dam-i SQL interface is sufficient for correct behavior and the
version now in development is based on Oracle. We note that the
use of parallel query processing and lightweight-process cmnmu-
nication will most likely be needed in the objective DAI13X sys-
tem. This is being explored in conjunction with the work repn-ted
on in this paper.

The rule compiler takes the rules and the schema as input and
generates the object code for the rules and an augmented schema
as output. The schema is augmented to support the efficient pro-
cessing of the rule activation mechanism and is specific to the rules
that were compiled. That is, the changes to the schema are rule de-
pendent. The augmented schema is then used by Genesis when
~rocessing the rules.

.

.

,

The s;hema is augmented in several ways, They are:
Create ajltering index on the augmented base relations. This
index is presented in detail in the next section.
For each base relation referenced by a rule condition, augment
it by adding a timetag attribute. These relations are then stored
in order by the value of the timetag. Tnetags are strictly in-
creasing integers assigned when records are added or modMied.
This is unnecessary if the DBMS assigns unique tuple identi6-
ers.
For each augmented relation that is referenced in a negated
condition, c;eate a second relation which will shaabw~he orig-
inal. Shadow relations are only needed to support negation and
their use is described in Miranker, Brant, Lofaso, and Gadbois
[1990]. In a version-based DBMS, even this extension is not
needed.
The compiled rules and the augmented schema are then used

by Genesis to activate the rules. The primary database support for
rule activation is the filtering index.

3 A FILTERING INDEX TO SUPPORT RULE
ACTIVATION

Rule activation in DA~X is supported through an index de-
signed to provide a value-based join path combined with specific
information pertaining to the constant tests within conditions of a
rule. The design of the filtering index has been guided by several
types of information which may be used to accomplish efficient
rule activation. Much of the work that has been done in the expert
system domain is applicable (McDermott, Newell, and Moore
[1978], Gupta [1987], Miranker [1990], Bran~ Grose, Lofaso, and
Miranker [1991]). At a minimum, we may learn from the in-depth
studies that characterize the rules in hard expert systems. From
these studies we know that for a typical rule program
1.

2.

3.

4.
5.
6.
7.

8.

9.

from one rule firing to the nexi most of the database is un-
changed,
most rule actions result in changes to the database (but the
number of changes is small),
rule actions that modify existing records are much more com-
mon than those which add new records,
the changes have a small scope (few rules affected),
at any given time, only a small subset of rides are activated,
most condition elements contain constants,
we can effectively use the constant tests within conditions to
identify rules that are NOT active,
constant tests provide good selectivity, i.e., they are highly se-
lective,
rules are com~osed of 2-16 conjunctive elements.

10. rules have 2 ~ 5 join attributes~and
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11. the join selectivity on records that satisfy the constant tests is
medium, i.e., about 0.5.
These pieces of information have led to various breakthroughs

and improvements in rule activation within expert system shells.
The first and foremost of these was the development of discrimina-
tion networks such as Rete and TREAT. These networks filter the

data based on constant tests within each condition and store the re-
sults in the a-memories. These provide links to the base relations
and as such are indices. In addition to forming an index on the base
relations, the a-memories can be used to identify which rules are
not satisfiable. That is, if a rule’s constant tests are not satisfied by
at least one base relation record, then do not perform the joins.
This provides a powerful filter to determine which joins need to be
performed. It has been shown that the use of TREAT provides an
effective rule activation mechanism in a database context, and it is
used in the Ariel system (Wang and Hanson [1990], Hanson
[1991]).

While discrimination networks provide a powerful tool in rule
activation, the lazy matching technique used in the LEAPS ap-
proach has dramatically surpassed them in performance. Even
more importantly for databases, LEAPS uses much less space than
discrimination networks for its internal state. Less state means less
state maintenance, which implies faster state maintenance. When
replacing a discrimination network with LEAPS it was recognized
that constant tests would still be required for any efficient rule acti-
vation since they provide such a powerful filter on the joins to be
performed. Therefore, we needed to keep the information provided
by the u-memories of the network. However, it wasn’ t at all clear
that the et-memories themselves were needed. This issue led to the
development of a filtering index (FI).

Even though et-memories provide an index to the base rela-
tions, they may be of little advantage in computing a join on those
records, since they are not organized by join attribute value. One
solution would be to implement the rx-memories as a file structure
and build a join attribute, vahre-based, index on top of them. This
was the solution used in Ariel. However, since updates are so com-
mon in these systems, we argue that the overhead to support join
indices on top of rx-memories is not justified. Instead, we looked
for a technique that would involve a single index, which would re-
quire no more entries than c&memories, and still provide both con-
stant test filtering and join support. The result is an attribute-based
index clustered by values on a given attribute. The FI file records
are defined as (rel, attr,val.tt, s_bitO, ....s_bit31). where rel identi-
fies a base relation, attr identifies a join attribute in rel, val is a val-
ue for attr, tt is the timetag of the record in rel having the value val,
and S_bitO,. . . . ,s_bit31 is a bit string defined below.

In discrimination networks, when a tuple is inserted into a base
relation, a sequence of constant tests are performed, one test for
each constant that appears in the rules’ conditions. For FI records
the constants are enumerated and mapped to a bit vector
(s_bito,...,s_bit31). Whereas discrimination nets employ a linear (in
the number of rules) method to update ct-memones, DATEX uses a
log time algorithm (in the number of constants in the rule source)
to determine the bit string (Nishyama et al. [1992]). In general, a
record is added to the FI file for each join attribute of that tuple.
The purpose of the bil string is to avoid accessing base relation
records that do not satisfy the constant tests in a given predicate
during the join operation, and thus replace the function of the a-
memoryl. Through analysis of our benchmark suite it was deter-

mined that 32 different constant tests for each base relation are suf-
ficient. The Ff index records are identical to any standard index,
with the exception of this additional bit vector (one word).

3.1 Join Access Path Analysis

An analytical comparison was performed to determine the ex-
pected performance of the two indexing alternatives, one defined
for a-memories (the AMEM file) and one for the FI. The result
was that there is no case where the AMEM performs better than

the FI. Moreover, the El performs much better than the AMEM for
most cases.

To investigate the performance of the FI compared to an a-
memory index, we considered a file structure based on a-memo-
ries. The AMEM file has records defined as (cond, rel. tt), where
cond identities a specific condition of a rule, rel is the base relation
on which cmd is deEned, and u is the tirnetag of a record in rel that
satisfies cond.

For ease of representation we assume a single file, called the
BR file, contains the base-relations. Records in the BR file have the
form (@lJLattr,val, ,..,attr,vat), where rel is a base relation, ttis a
timetag identifying a unique record in rel, and the att~ val are the
attribute/value pairs for the record.

Figure 2 shows an example of a two-way equijoin based on an
AMEM to BR Ele access path. The join is performed in a nested
loop manner by order of timestamps. As can be seen in the figure, a
total of 12 records are read to accomplish the join. All records
from the AMEM file must be read and, for each of those, their cor-
responding base-relation file record must also be read. The only
parameter restricting the number of records read is the selectivity
of the constant tests.

Rule (OPS5 Syntax)

(p example
Condition 1+(R ‘A 1 “B <x>)
Condition 2 ~ (S ‘B <x> ‘C 2)

---> (...))

AMEM File BR File

(cond, rel, tt) (rel, tt, attr, valr

attr, val)

‘R, O, A,l, B,a

.R, l, A,l, B,b.

R,3, A,O, B;b

St2, B,at Ct2

S,4, B, b,C, l

“S,5, B, b,C,2

8

1

2

8

3

4

8

5

6

8

7

8

89

10

8

11

12

Get first AMEM record for cond=l .

Get appropriate BR record.

Get first AMEM record for cond.2 .

Get appropriate BR record – compare
the BR records from steps 2 and 4.
Join criteria is satisfied.

Get next AMEM record for cond.2.

Get appropriate BR record – compare
the BR records from steps 2 and 6.
Join criteria is not satisfied.

Get next AMEM record for cond.1.

Get appropriate BR record.

Get first AMEM record for cond=2.

Get appropriate BR record – compare
the BR records from steps 8 and 10.
Join criteria is not satisfied.

Get next AMEM record for cond=2.

Get appropriate BR record – compare
the BR records from steps 8 and 12.
Join criteria is satisfied.

FIGURE2.Joining relation Rwithrelation Susing
AMEM file

1. Wenotethat while the functionality isreplaced, the access
paths may have different lengths.
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Figure 3 shows the same example as that in Fig. 1 using the FI
tile instead of the AMEM tile as an index on the BR tile. In this ex-
ample, two fewer records are read from the BR file. The key func-
tional difference is that the FI file can filter on both the selectivity
of the constant tests and the join values. The actual performance of
each method is subject to many factors. However, the two domi-
nant parameters are select selectivity and join selectivity.

The overriding cost factor in using either index is the number
of disk accesses incurred during a join. This is measured by exam-
ining the cost to equijoin one tuple, T, with a relation, R, using the
previously defined file structures. The following parametem are
needed
●

✎

●

●

●

n = number of tuples in R
o~el = constant test select operator selectivity for R in the query
being executed
~join = join operator selectivity, T join R, in the query being ex-
ecuted
b = block size in bytes = 8192
[Fl = FI tile record size in bytes = 20

Rule

(p rule_l
(R ‘A 1 ‘B <X>)
(s “B <x> “c 2j
---> (...))

FI File BR File

(rel, attr, val, (rel, tt, attr,
tt, s_bit) val, attr, val)

oI Get first FI record for relation R –
passes select bit test.

o2 Get BR record.

o3 Get first FI record for relation S –
passes select bit test: Records
from steps 1 and 3 satisfy the join
criteria.

o4 Get BR record.

o“6 Get next FI record for relation R –
passes select blt test.

~ Get BR record.

08 Get first FI record for ::&::&n S –

?;EZeEtZ~;eEtaE;t2$Ztnot satisfy the
join criteria.

●

✎

●

●

✎

✎

tAMEM=AMEM filerecordsizein bytes=8
tDB=BRfilerecord sizeinbytes=l 024(this isstandard for
manyexpertsystems )
f= blocking factor for B+ tree = 0,7
BF1 = number of blocks for the FJ file =

n x tFI nx20
— .
b xf 8192 X 0.7

= 0.0035n

~,4~~M = number of blocks for the AMEM file =

n x ‘A.MEA4 nx8

b xf = 8192x0.7
= 0.0014n

BDB = number of blocks for the BR file =

n x tDB n x 1024
—=

bxf 8192x0.7
=0.1786n

Using the AMEM/BR access path, we scan the records of the
AMEMtile that have acondition identifier corresponding to the
appropriate condition element forthequery being processed. &

suming scold start, the number of disk accesses for scanning the
AMEMfileis

min (o,,ln, 0.0014n) .

Thus, for all but the smallest values of o~,l, all 0.0014n blocks will
be read. ‘Ihese will result in

min (o$=ln, 0.1786n)

disk accesses to the BR file. The total number of disk accesses for
theAMEM/BRpatb is

min(a$etn,0.0014n) +min(o,eln,0.1786 n).

Using theFUBRaccess path, wescantherecords oftheFIfile
that satisfy the equijoin value from tuple T. Again assuming a cold
start, the number of disk accesses for scanning the FI file is

rnin (ajoinn, 0.0035 n).

These will result in

min ( G$e[ojo inn, 0.1786n)

disk accesses to the BR file. The total number of disk accesses for
the FUBR path is

min((sjoinn, 0.0035n) +min(c~gl(sjonn, 0.1786 n).

Clearly, thedominant factor inthese equations is the number
of accesses to the BR tile. Therefore, the FUBR path is favored
whenever

min (o~elcjon n, O.1786n) <min(a$ep, 0.1786 n).

That is, the FI/BR path can never be worse than the AMEM/BR
path and will be considerably better for low values of o$,1 and
~join. Figure 4 shows a plot of the performance advantage FUBR
over AMEMLBR. The x-axis is Join Selectivity (~join,) the z-axis is

Q G.t BR record,

FIGURE 3. Joining relation R with
relation S using FI

FIGURE 4. D~k Access Comparison of FI File and
AMEM File
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Select Selectivity (osel), with the advantage factor on the y-axis
such that

min (O~el, 0.1786)
y= [1nzirz(z, 0.1786) ‘<x< 1

13<y540 .
min (ts~e[cjoin, 0.1786) = min (n, 0.1786) o<~, 1

A particular y-axis value corresponds to the performance increase
factor of PI over AMEM, i.e., a value of 10 means that FI is 10
times faster than AMEM. As can be seen from the graph, the FI/
BR path is favored for most values of ~joti and O$ehFor moderate
tO 10W values Of Oj~~ and o~el the performance factor is pro-
nounced and no combination favors the AMEIWBR path. This
analysis led to the adoption of the FI file as an index for DATEX.

The overall size of the index and number of updates required
to process a database change was also examined. A comparison
was made between the space requirements for an AMEM system
versus an FI based system2. This comparison was based on the
largest problem size that has been run for our scalable benchmarks
and corresponds to databases in the megabyte range. While these
are small by database standards, they still represent an important
step forward for hard problems on active databases. The object of
the analysis was to examine the number of FI entries that could be
expected in DAI13X as opposed to the number of cx-memory en-
tries in LEAPS. The result is in Fig. 5. In general the FI approach
was roughly equivalen~ though somewhat better than, the AMEM
in size.

4 PERFORMANCE RESULTS

The purpose for gathering performance data on DAI’EX was to
evaluate the design decisions made during the analysis phase of the
development. Important issues were execution time, FI behavior,
and disk buffer hit rates. The benchmark programs and data sets
used in evaluating DA~X are shown in Tables 1 and 2.

❑ Shared alpha-memo

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0 L.El

entries

iiiikl
manners waltz waltzdb weaver

FIGURE 5. Comparison of Shared Alpha-Memory and
FI Entries

2. llese results assume that u-memory sharing is implemented. If
not, the size of the AMEM tile would be 6 to 40 times larger.
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4.1 FI File Results and Analysis

One of the important aspects of using the FI file was the aggre-
gation of the constant test select information from all relevant con-
dition elements into a single bit mask. In the process of computing
a join, this scheme could be no more effective than et-memories.
However, it could be much worse. Consider the case of two differ-
ent equijoins involving the same base relation. Let the condition
element for join 1 have a O$elof 0.02 and let the condition element
for join 2 have a G,ezof 0.5. When computing join 1 using the FI
file, for every tuple that satisfies the constant test, 25 tuples will be
read that do not. This is the undesirable effect of aggregating the
constant test select criteria. To address this concern the number of
accesses made for computing all equijoins was compared with the
number that passed the filter, i.e., the appropriate select bit was set.
The results are shown in Table 3. For manners and wrdtzdb, the re-
sults were extremely good, with the number of tuples passing the
filter averaging over 90%. For waltz and weaver the average was
50?4 to 60%. One possible explanation for the low percentage of
weaver tuples passing the filter is that weaver contains a very large
number of condition elements on relatively few base relations.
Thus, the negative effects of aggregation are more pronounced.

Table 1. Program Summaries

Name No. of Rules Comment

manners 8 Finds a seating arrangement for dinner
guests by depth-first search.

waltz 33 Waltz line labeling for simple scenes
by constraint propagation.

waltzdb 35 A more database oriented version of
Waltz line labeling for complex scenes
by constraint propagation.

weaver 637 A VLSI router using a blackboard
technique.

Table 2, Initial Database Size

Program Set 1 Set 2 Set 3 Set 4

manners 16 32 64 128
waltz 864 1800 2664 3600
waltzdb 288 576 864 1152
weaver 531 791 1311 1831

Table 3. Filtering of Equijoin Buffer Accesses

me Set 1 Set 2 Set 3 Set 4

manners:
Raw 1,279 7,839 53,220 384,415
Filtered 1,039 6,847 49,188 368,159
% Passed 81 87 92 96

waltz
Raw 62,505 126,075 184,755 248,325
Filtered 32,246 64,941 95,121 127,816
% Passed 52 .52 51 51

waltzdb:
Raw 1,779,562 5,634,112 11,642,854 19,805,788
Filtered 1,751,334 5,582,740 11,568,338 19,708,128
% Passed 98 99 99 100

weavec
Raw 5,864,876 8,539,384 14,934,424 22,849,464
Filtered 3,415,058 5,171,189 9,467,849 14,905,309
% Passed 58 61 63 65

The FI file is used to index equijoins only, i.e., = and +. All
non-eqnijoins are produced by scanning the database directly.
Therefore, no constant test selections are made a priori for joins on
condition elements involving non-equijoins. This turned out to



have been a poor decision. Table 4 shows the number of accesses
made for the non-equijoins (raw) versus the number that passed the
constant test filters (filtered). By dividing the filtered amount by
the raw, a O$el value can be derived. For all runs of all programs
except weaver, the values of o~el were very low, ranging from 0.01
to 0.11 with a mean of 0.05. Weaver showed a g~el of 0.56. For
manners, waltzdb, and weaver, the impact of having a join index
for non-equijoins should be substantial, however, equijoin access-
es are dominant in those programs. On the other hand, waltz is
dominated by non-equijoin accesses and should demonstrate a sig-
ntilcant speedup over the current DATEX system.

from a main-memory expert system shell to a disk-resident data-
base.

Table 5. Disk Buffer Hit Rate for FI File Accesses

Qpe Set 1 Set 2 Set 3 Set 4

manners:
Buffer
Disk
Hit Rate

waltz:
Buffer
Disk
Hit Rate

waltzdb:
Buffer
Disk
Hit Rat

7,092
2

100.0

35,303
6

100.0

186,300
25

100.0

1,099,681
23,990

97.8

Table 4. Filtering of Non-Equijoin Buffer Accesses 791,755
32

100.0

2,167.149
440,030

79.7

3,928,367
1,194,672

69.6

6,461,663
2,238,361

65.4Type

manners:
Raw
Filtered

Set 1 Set 2 Set 3

10,970
381

0.03

316,811
24,859

0.08

1,714,339
13,946

0.01

4,168,456
2,323,498

0.56

Set 4

42,426
765

0.02

429,570
29,464

0.07

2,890,487
18.210

0.01

5,658,856
3,161,818

0.56

4,427,726
5,698

99.9

13,177,002
225,957

98.3

26,526,927
591,040

97.8

44,504,770
1,115,422

97.5
818

0.7;

2,922
189

0.06o~el
waltz

Raw

weaver:
Buffer 9,743,095 14,075,878 24,316,040 37,104,651
Disk 19 23 37 69,808107,411

8,559
0.08

216,299
17,035

0.08
Filtered Hit Rate 100.0 100.0 100.0 99.8
G.el

waltzdb: Table 6. Dkk Buffer Hlt Rate for BR File Accesses
Raw
Filtered
cr~el

weaver:
Raw
Filtered
G.el

277,499
5,418

0.02

843,343
9,682

0.01 ~pe Set 1 Set 2 Set 3 Set 4

manners:
Buffer 23,905 99,288 541,619 3,934,357
Disk 200 2,488 27,693 355,179
Hit Rate 99.2 97.5

waltz:
94.9 91.0

Buffer 833,769 1,820,951 2,675,493 3,633,409
Disk 15,666 32,184 47,311 63,324
Hit Rate 98.1 98.2 98.2 98.3

1,985,375
1,085,415

0.55

2,710,056
1,501,178

0.55

4.2 Buffer Hit Rate

A key measure for any system based on disk-resident data is
the buffer hit rate. We measured the effectiveness of the buffering
for both the FI and the BR file. The FI file data (Table 5) was ex-
pected to show very high hit rates. This is due to the relatively
small size of the ~ file and the kuge number of records per disk
block. The FI and BR files each had fifty 8K blocks assigned to
them. This assignment was fixed for all benchmarks. The results
were as expected, with the exception of waltz. As can be seen in
the table, waltz had a hit rate that vaned from 100% for the small-
est problem, to 65.4% for the largest. While we expected that due
to the fixed buffer assignment, we would see a drop in hit rates as
the data set size increased, we were somewhat surprised at the
magnitude of the drop in waltz. This suggests that more thought
should be given to buffer management issues. The benchmarks
were performed using a least recently used replacement policy.
Another reactive replacement approach might make more sense,
but we suspect that prefetching is likely to be effective as well.
This is due to the seaming of tiles for executing the joins.

The buffer hit rates for the BR file are shown in Table 6. Over-
all these were quite acceptable. The downward trend is still
present, however, and should continue as the data set increases.
Simply increasing the buffer size should be both reasonable and
sufficient. The typical BR tile size during the execution of the larg-
est benchmarks was approximately 1000 - 1200 blocks. Ten per-
cent of that would suggest a buffer of 100-120 blocks. Therefore,
for the largest data sets, our 50 block buffers were undersized by
most standards.

4.3 Execution Time Results, Parallelism and Future
Directions

DATEX was compared with the fastest known, main-memory,
discrimination network based, expert system — 0PS5.C (Miranker

and Imfaso [1991]). When compared with this system (Table 7),
the times range from 5 times jizrter to 74.5 times slower with an
average of 22.7 times slower. The combination of LEAPS and the
FI techniques nearly overcomes the overhead incurred by moving

waltzdb:
Buffer 13,007,084 46,235,110 95,248,329 161,633,113
Disk 730.050 2,544,482 7,000,782 9,308,836
Hit Rate 94.4 94.5 92.6 94.2

weave~
Buffer 24,559,493 39,950.082 84,465,546 131,730,488
Disk 41,451 412,566 2,881,329 4,934,730
Hit Rate 99.8 99.0 96.6 96.3

Table 7. DATEX versus OPS5.C Execution Time (in seconds)

Program

manners:
Set 1
Set 2
Set 3
Set 4

waltz:
Set 1
Set 2
Set 3
Set 4

wakzdb:
Set 1
Set 2
Set 3
Set 4

weave~
Set 1
Set 2
Set 3
Set 4

DATEX 0PS5.C Increase Factor

17,4
69.3

365,6
2,640,7

1.0
13.8

425.8
15,838.5

343.3
988.0

2,963.0
3,831.8

641.5
2,109.6
4,341.6
8,033.3

170.3
255.8
552.6

1,053.7

17.4
5.0
0.9
0.2

5.5

::;
6.6

10.7
11.1
11.9
10.4

73,7
74.5
67.5
55.6

1,901.2
6,939.2

14,259.5
25,102.1

6,852.8
23,443.3
51,722.3
83,412.7

12,551.4
19,055.0
37,326.5
58,618.0
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A number of optimization problems remain. DATEX guaran-
tees that every join is supported by FI entries by greedily adding
new links. We do not yet have any results on finding the minimum
size subset of attributes needed to establish this guarantee. Since
rule predicates can be large, there is great flexibility in selecting a
query plan. It is not inconceivable that an optimization method
would determine that only a subset of the base relations need to be
augmented with FI entries.

Although this DPZEX prototype targets a uniprocessor and
otherwise ignores transaction management, the philosophy of com-
pile time analysis has been applied in a sister project on the con-
current execution of rule languages, CREL (Kou, Miranker, and
Browne [1991]). The CREL system includes a parallelizing com-
piler. The compiler takes as input a rule program that has been
written by a programmer who assumes that the entire program will
be executed as a single uninterrupted transaction. The output of the
compiler is a collection of rule programs, each containing a small
subset of the rules in the original, such that each new rule program
can be run as an independent transaction in a database environ-
ment. The concurrent execution of all the subprograms is guaran-
teed to be correct. The compiler is based on standard techniques
presented in the literature on serializability.

Assuming an adequate parallel query processor, we exhapolate
that the synthesis of DATEX and CREL will result in the parallel
execution of disk-resident, gigabyte, expert system problems in
elapsed times measured in minutes.

5 CONCLUSION

The DATEX system demonstrates that solving hard expert sys-
tem problems in tight integration with DBMSS is not far out of
reach. The critical aspects of a solution embodied in DATEX in-

clude an effective, in both time and space, marking scheme for nde
activation and a specialized indexing method derived from a com-
pile time analysis of the source rule program. We claim that ac-
ceptable performance from such an active database system is
attainable only if the database contains explicit support for the in-
ference engine. We further claim that in light of the scope of prob-
lems solved by expert systems, that we have reduced the cost of
such support to an acceptable level.

Although the solutions described herein demonstrate that an
active database inference engine can approach the execution speed
of a main-memory expert-system shell, it is clear that additional
speed is required for large databases and that the use of large-scale
parallel computers may be a necessary part of an active database
system.
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