
1

Effects of Database Size on Rule System Performance:
Five Case Studies

David A. Brant+, Timothy Grose+, Bernie Lofaso+, & Daniel P. Miranker$

‘Applied Research Laboratories
The University of Texas at Austin

P-0. Box 8029
Austin, TX 787138029

Abstract
Building practical expert database systems re-
quires an effective inferencing capability over
large data sets. rnferencing in this context means
repeatedly executing a fixed set of queries, inter-
leaved with update transactions, until a fix:3
pint is reached. The effectiveness of ,.lir-
cncing mechanism is heavily depcnde; !:on :he
amount of state space needed and the ability of
the underlying algorithms to avoid unnecessary
work. Common techniques used in the design of
rule-based systems store large amounts of state in
order to derive precise query support information
that will enable better performance. These tech-
niques were intended for use in main memory on
small data sets and are not ncccssarily suited for a
database environment. When confronted with a
large database these techniques may experience
severe performance problems - severe enough to
render them useless. In this paper we examine the
effects of database size on live test cases. The use
of real programs with real data pr0vidc.s insights
mat are not to be found through analysis and sim-
ulation. We compare two different rule systems,
one based on the TREAT match algorithm and
the other on LEAPS, a lazy matching algorithm.
The results show that state can be a problem in
rule systems and that by using lazy matching it is
possible to eliminate some state while improving
performance.

Introduction
A practical integrated database/rule system will require

an efhcient inferencing capability on large databases. Our
research focuses on active forward chaining inferencing

*Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

systems and their behavior in a database environment.
Many studies have been done on various aspects of inte-
grating rule and database systems. Several have dealt with
performance issues [Tan. Maheshwari, & Srivastava,
1990, Cohen, 1989, Wang, 1989, Delcambre & Etheredge,
1988, Bein, King, & Kamel, 19871. Most of these are ana-
lytical in nature and/or simulate synthesized rules and
data. While analytical and simulated approaches to this
problem are valuable, important issues such as realistic
query mixes, rule execution order, and join selectivity fac-
tors, are heavily influenced by both the rule program itself
and the data on which it operates. Therefore, we have as-
sembled a suite of live real world programs with automati-
cally extensible databases for use in understanding rule-
based system behavior as the size of the database grows’.
This work is being done in the context of developing DA-
TEX, a tightly integrated expert database system.

In the interest of providing effective integration of rule
execution with database systems, the behavior of incre-
mental match techniques, first developed for main-memo-
ry AI systems, is investigated. These techniques take
advantage of a space-time trade-off and store large
amounts of state in order to derive precise query support
information. We explore the utility of TREAT match
[Miranker, 19901 and compare it against LEAPS [Mirank-
er & Brant, 19901, a slightly more complicated algorithm,
with better space characteristics, intended to support infer-
encing on databases.

In effect, rule-based systems execute a set of queries,
interleaved with updates, in a cycle until reaching a fixed
point. In a naive implementation, this can easily imply ex-
ecuting ld - lo3 multiway joins each cycle for thousands
of cycles. In practice, that number is significantly smaller.
This is due to the key observation that these systems dis-
play temporal redundancy, i.e., from one cycle to the next,
there is very little change to the database. Thus, if knowl-

This work was supported by the ARL:UT Internal Re-
search and Development Program,

1, This suite is available from the authors and contribu-
tions of new programs and data generators are welcome.

Proceedings of the 17th International
Conference on Very Large Data Bases

287 Barcelona, September, 1991

edge about the system state is retained across cycles, the
amount of work done on any one cycle can become quite
manageable by just incrementally updating that state. In
the AI community the use of incremental match algo-
rithms forms the basis of effective main-memory rule exe-
cution environments [Forgy, 19821. The database problem
of maintaining a materialized view is an incremental
match problem without negation. A large number of incrc-
mental match algorithms have been described. Many of
the newer ones have been developed for database applica-
tions IWang, 1990, Blakeley & Martin, 1990, Srivastava,
Hwang, &Tan, 1990, Raschid, Sellis, & Lin, 19881.

The problem with incremental matching is that the
state for most algorithms has an exponential worst-case
space requirement. For I tuples in a database and a rule
with j joins, the worst-case state is 0(/J). While real sys-
tems don’t experience the worst case, any unexpected
large polynomial space would still present significant con-
cerns. To explore the possibility that programs might dis-
play this type of bad behavior, we conducted a scaling
study in which the databases of five real programs were
scaled up in size as their performance characteristics were
measured. The goal was to escape the temptation to use ar-
bitrary and manufactured values of selectivity for the se-
lect and join operators of rule systems, and to provide for
the interaction of many rules acting in concert. Achieving
this level of realism through analysis and simulation is ex-
tremely difficult, if not impossible.

The programs in the test suite are written in OPSS
[Forgy, 19811. While OPSS may he widely regarded as an-
tiquated, it nonetheless embodies many of the underlying
AI techniques used in other, more powerful, languages.
Moreover, since OPS5 has been around for such a long
time there exist public domain systems and numerous pro-
grams. Our empirical data was gathcrcd using two of the
best performing OPSS-based systems in existcncc. Both
are compiled systems. The first uses a TREAT match algo-
rithm which has been shown to be superior to the more
widely used Rete match for most programs. The second
uses a relatively new technique, called LEAPS, based on
the idea of lazy mafching.

Section 2 presents a brief description of rule-based sys-
tems, the four knowledge types that can be employed by
their incremental match algorithms, and an overview of
some of the published algorithms. In section 3 we describe
the metrics used in the study and the test cases. Section 4
presents our empirical results. Section 5 contains a sum-
mary and our concluding remarks.

2 Rule-Based Systems
A rule-based program is a set of rules of the form if

Pp.../\p, then Al ,..., A,,,
where PI~...hpn is a conjunction of n conditions or

predicates on the current state of the base relations of the

Proceedings of the 17th International
Conference on Very Large Data Bases

database, and Al,...,A, is a set of m actions or update
transactions on the database. In a relational model, each Pi
is a predicate on a single relation. These predicates may
contain constants and variables. Predicates containing
constants can be partially evaluated with the relational se-
lect operator. If predicates share a variable, it must be con-
sistently bound between them for the predicates to be
satisfied. This is accomplished by a relational join operator
(including both equijoin and non-equijoin). Execution of
the program proceeds by evaluating the predicates, choos-
ing one rule whose predicates are satisfied, executing its
actions, and repeating the cycle until a fixed point is
reached.

2.1 Query Support and Match Algorithms

Each unique set of tuples that satisfies a rule’s predi-
cates, P+.JV,, is an instantiation. Thus, the set of in-
stantiations at any one time is composed of the union of
the temporary relations resulting from the queries associat-
ed with those predicates. A critical component of any rule-
based system is the match algorithm that computes instan-
tiations. A naive algorithm for finding the instantiations of
the rules would execute the query associated with each
rule’s predicates against the entire database on each cycle.
That approach is combinatorially explosive and computa-
tionally intractable. To address this problem, rule-based
systems maintain state information from cycle to cycle.
This information provides query support for the match al-
gorithm. The knowledge provided by the state information
has been divided into four categories [McDermott, New-
ell, and Moore, 1978, and Miranker, 19901.
1. Condifion Membership: Associated with each Pi is a

running count of the number of tuples that satisfy its
select operation. This information is used to identify
rules that arc active, i.e., those with a non-zero count
for each Pi. lnaclive rules may bc ignored by the match
algorithm.

2. Memory Supporl: Provides explicit knowledge about
precisely which tuples satisfy the selects of which Pi.
These have been referred to as a-memory. If a separate
set of tuples is maintained for each Pi, duplicate infor-
mation will be stored for those predicates that have the
same select criteria on the same relation. Those sys-
tems that eliminate this redundant data are said to use
shared a-memory.

3. Condition Relationship: Provides knowledge about the
interaction of predicates, i.e., the intermediate results
of multiway joins are explicitly stored from cycle to
cycle. These have been referred to as P-memory.

4. Conjlicl Set Supporl: the conjlicf set containing all of
the instantiations for all rules is retained from cycle to
cycle.
We have added a fifth knowledge type based on a lazy

approach to query evaluation. We call the new type Reso-

288
Barcelona, September, 1991

Table 1 Relative Cost/Benefit Ranking of Rule Knowledge

Knowledge Type Space-Time Cost Expected Benefit
Condition Relationship (CR) very high very low
Memory Support (MS) high high
Condition Membership (CM) low high
Conflict Set Support (CS) ? ?
Resolution Support (RS) ? ?

Table 2 Match Algorithms and Their State Information

Algorithm
Rete porgy, 19821
TREAT [Miranker, 19901
Lazy [Miranker & Bran& 19901
Matchbox [Perlin, 19891
Gridmatch [Tan, Maheshwari, & Srivastava, 19901
unnamed machid, Sellis, & Lin, 19881
Rime [Hwang, 19891
unnamed [Oflazer, 19861

lution Support. An underlying theme in current match al-
gorithms is the eager evaluation of all active rules to
generate all possible instantiations. However, on any given
cycle only one instantiation is chosen to fire one rule. The
choice is based on a conflict set resolution strategy. This
observation has led to the development of LEAPS, a lazy
matching algorithm that computes a fireable instantiation
by using the conflict set resolution strategy to direct a best-
first search. In doing so, it eliminates the conflict set and
replaces it with a stack containing the state information
needed to control a demand driven stream-based query
process. Thus, key issues include the effects lazy matching
has on performance and its space requirements compared
to eager schemes.

Table 1 shows the knowledge techniques with a sum-
mary of their relative cost and expected benefit, As can be
seen, the merits of using conflict set support versus resolu-
tion support are left as an open qucslion. We will attempt
to resolve these question marks based on the case studies
in the following sections.

The values that are given in Table 1 are based on sever-
al observations. Since condition relationship stores the re-
sults of all intermediate joins it is given a very high space-
time cost. Furthermore, TREAT, which does not use this
knowledge, consistently outperforms match algorithms
which do. Therefore, its expected benefit is stated as very
low.

Memory support stores all of the intermediate results
of select operations. Since there is a one to many mapping
from the database to a-memory, the cost is generally high
for this knowledge. However, when the selectivity of the
constant tests is reasonably low (as it is for most systems
measured), the expected benefit in increasing the speed of
joins is also high.

Condition membership is low in space cost since it
only requires a few bytes to implement. If memory support

Pfoceedmgs of the 17th International
Conferencz on Very Large Data Bases

CR MS CS CM RS
4 J

J J
4 5 J

5 5
J

s J
J J

is implemented, then its time cost is also extremely low,
since all of the select operations will have to be performed
anyhow. If memory support is not used then its time cost
might be more accurately stated as moderate, as it will
then have to do its own select operations.

Table 2 lists some of the match algorithms in the litera-
ture and their associated knowledge types. While not obvi-
ous, the selection of some knowledge types makes others
of little use. For instance, if condition relationship is cho-
sen, then condition membership may provide little or no
benefit. Therefore, it is probably not reasonable to expect
any one algorithm to use all of them.

2.2 Match Algorithms

Most rule systems in use today are based on some form
of the Rete match. The two exceptions that we are aware
of are TREAT and LEAPS. The following sections dc-
scribe these at a high Icvcl.

2.2.1 Rete
The Rete match incorporates memory support and con-

dition relationship, It compiles the queries of the rules into
a discrimination network in the form of an augmented
dataflow network. The input portion of the Rete network
contains chains of tests that perform the relational select
operations. Tokens passing through those chains partially
match a particular predicate and are stored in a-memory
nodes, thus forming the memory support part of the algo-
rithm. Following the a-memories are two-input nodes that
test for consistent variable bindings between predicates.
By analogy, these nodes incrementally compute the join of
the memories on the input arcs. When a token enters a
two-input node it is compared against tokens in the memo-
ry of the opposite arc. Paired tokens with consistent vari-
able bindings are stored at the output of the two-input
nodes as p-memories. Tokens that propagate from the last

289 Barcelona, September, 1991

p-memories in the network reflect changes to the conflict
set.

The Rete algorithm is the basis for most rule-based
systems in use today.

2.2.2 TREAT

It has been shown that the condition relationship infor-
mation contained in the P-memory is not justified from a
performance standpoint in main-memory systems
[Miranker, Lofaso, Farmer, Chandra, & Brant, 19901 and
this result has been recently extended to databases as well
Wang & Hanson, 19901. The TREAT match algorithm
does not use p-memories and has been shown to consis-
tently outperform Rete-based systems. The rationale for
this is due to the effects of the removal of tuples from the
system. In general, Rete must do as much work to delete a
tuple as it does to add one. TREAT does much less work
on removals since it does not have to update the intermedi-
ate join results. TREAT does do slightly more work than
Rete when tuples are added, but for most programs, the
trade-off favors TREAT.

From a database perspective, obviating the need for
maintaining intermediate join results is crucial, since they
constitute the largest consumer of memory in Rete-based
systems. However, TREAT still makes use of three catego-
ries of state information - condition membership, memory
support, and conflict set support. It is intcrcsting to note
that TREAT represents a case of reducing space requirc-
ments while at the same time improving performance.

2.2.3 LEAPS

An underlying theme in both Rete and TREAT is the
eager evaluation of all active rules to generate all possible
instantiations, However, on any given cycle only one in-
stantiation is used to fire one rule. This observation has led
to the development of the lazy matching algorithm known
as LEAPS. LEAFS computes at most one instantiation on
any given cycle. This is done by setting up demand driven
data streams used to produce instantiations. In doing so, it
eliminates the conflict set and replaces it with a stack. The
stack contains information needed to restart streams that
have been temporarily suspended due to the processing of
a higher priority stream. One of the issues to be examined
in the study is how big of a space problem is the conflict
set and is the stack an improvement.

3 The Test Suite and Metrics

3.1 The Programs and Data Generators

Each of the selected programs was chosen for a specif-
ic reason. The goal was to achieve a diversity in terms of
the number of rules, the AI problem solving technique em-
ployed, and the problem domain, First, it was necessary to
be able to generate randomly large databases for the pro-
grams to work on. It was also desirable that these databas-

Proceedings of the 17th International
Conference on Very Large Data Bases

es be automatically produced under controlled parameters.
Second, we wanted a set of programs that varied consider-
ably in size and complexity. The resulting suite contains
programs that range from several rules to over seven hun-
dred rules. And, third, we wanted to chose a set of pro-
grams that spanned the range of standard expert system
problem solving techniques, e.g., constraint propagation,
blackboards, and A* search. Table 3 provides a summary
of the major characteristics of the test suite.

Table 3 Program Summaries

Name No. of Rules Comment
manners 8 Finds a seating arrangement for

rslinint; guests by depth-first

waltz 33 Waltz iine labeling for simple
scenes by constraint propagation.

waltzdb 35 A more database oriented version
of Waltz line labeling for com-
plex scenes by constraint propa-
gation.

ARP II8 Route planner for a robotic air
vehicle using A*.

weaver 637 A VLSI router using a black-
board technique.

3.1.1 Manners

Manners was derived from a program appearing in Ki-
eman, de-Maindrivillc. & Simon, 1990. It is based on a
depth-first search solution to the problem of Anding an ac-
ceptable seating arrangement for guests at a dinner party.
The particular seating protocol enforced by the version
used in this study ensures that each guest is seated next to
someone of the opposite sex who shares at least one hob-
by. The manners program can be extended quite easily to
handle many different criteria for constraining the seating
arrangement. Further it is very easy to adjust the join se-
lectivity of the program by controlling the distribution of
the hobbies. The data used in this study gave a uniform
distribution of hobbies from a minimum of 2 to a maxi-
mum of 5 per guest. Guests were evenly divided into male
and female.

3.1.2 Waltz and Waltzdb

Waltz was developed at Columbia University. It is an
expert system designed to aid in the 3-dimensional inter-
pretation of a 2-dimensional line drawing. It does so by la-
beling all lines in the scene based on constraint
propagation. Only scenes containing junctions composed
of two and three lines are permitted. The knowledge that
Waltz uses is embedded in the rules. The constraint propa-
gation consists of 17 rules that irrevocably assign labels to
lines based on the labels that already exist. Additionally,
there are 4 rules that establish the initial labels. The rules
provide the explicit constraint information by means of
constant tests - thcrc is no generalized form of constraint

290 Barcelona. September, 1991

propagation. The significance of this became apparent
when we tried to expand the Waltz program to handle the
more general case of line drawings involving junctions
composed of 4, 5, and 6 lines. This resulting program is
called waltzdb.

Waltzdb was developed at the University of Texas at
Austin. It is more general version of the Waltz program
described in the previous section. Walkdb is designed so
that it can be easily adapted to support junctions of 4, 5,
and 6 lines. The method used in solving the labeling prob-
lem is a version of the algorithm described by Winston
[Winston, 19841. The key difference between the problem
solving technique used in waltz and waltzdb is that
waltzdb uses a database of legal line labels that are applied
to the junctions in a constrained manner. In Waltz the con-
straints are enforced by constant tests within the rules.

The input data for waltz is a set of lines defined by
Cartesian coordinate pairs, The data generator uses a base
drawing consisting of 72 lines which we refer to as a re-
gion. The user can specify any number of regions to be
generated. We have run test cases with as many as 100 rc-
gions.

time dominates the overall execution time for these sys-
tems, the second measure is the number of times an a-
memory is touched in the joins of the matching algorithm.
This is further broken down into successful versus unsuc-
cessful tests. Successful tests are important in that they in-
dicate the minimum work necessary given a perfect
indexing method on the join attributes.

4 Results
Each program was run with four equally spaced sets of

data points (shown in Table 4). Table 5 shows the counts

Table 4 Initial Database Size

Program
manners
Waltz

waltzdb
ARP’

Set 1
16

iii

Set 2
Set643 “%i

18:; 2664 3600
576 864 1152

3.1.3 ARP

The Aeronautical Route Planner calculates the lowest
:ost route between two points for an airplane or missile. It
calculates the route based on terrain, threat, and cost data.
The route will avoid terrain and surface-to-air missile sites
(the threats). ARP minimizes three costs for a roulc: the
cost of travelling a distance, the cost of being at an alti-
tude, and the cost of being at a height above the terrain.
ARP uses the A* search algorithm to restrict the portion of
the search space it needs to examine to calculate the route.
The input data is a database of terrain information for a
given corridor.

3.1.4 Weaver

Weaver is an expert system designed to perform VLSI
channel and box routing [Joobbani & Siewiorek, 19861. It
is a large complex program that is made up of several in-
dependent expert systems communicating via a common
blackboard. Its input data is a list of pins, nets. and channel
dimensions.

weaver :Yl
106 106 106
791 1311 1831

of the measured elements at the point when they were at
their maximum. There are several things to notice in this
data. First, the stack is very small and remains that way as
database size increases. In fact, for four of the five pro-
grams it .is a small constant. Contrast this to the size of the
conflict set and its growth. Figure 1 graphs this data for all
five programs, Also note that we have identified non-linear
behavior for the conflict set in the manners program,

Another interesting aspect of these programs was the
size of the (x-memory. Both of the systems used to gather
the data do not implement sharing of a-memory, but clear-
ly the dominant space factor is a-memory. We compared
the a-memory size to the maximum size of the database
during the program execution and discovered that the rep-
lication factor of data in the a-memory was much higher
than anticipated. Table 6 compares the maximum size of
the database with the measured maximum a-memory size
(columns 2 and 3). Based on this data we calculated the
average number of a-memory entries required for each da-
tabase entry, Since any change to the database requires
changes to the a-memory, this can also be interpreted as
an update ratio (column 4).

3.2 Metrics

In order to minimize the affects of constants we have
chosen to represent all of the memory usage in terms of
the number of data elements. Data elements for both
TREAT and LEAPS include the tuplcs of the database and
a-memory. TREAT also contains entries in the conflict set,
while LEAPS keeps a stack.

In order to analyze the effects of using shared a-mem-
ory, we used traces of the executions to drive a shared a-
memory simulator. The result is shown in column 5. By
dividing the measured data in column 3 with the simulated
data in column 5 we derived the average sharing ratio, i.e.,
the number of a-memory entries that are subjected to the
same select operator. The result was surprising and dem-
onstrated the clear benefits of using sharing. The last col-
umn shows the expected a-memory updates per database
change based on sharing.

There are two primary measures of time used in this Table 7 shows the total execution time for the test pro-
study. The first is the overall execution time of the pro- grams. The data is graphed in Fig. 2. To get these times the
grams in terms of the number of cpu seconds. Since match programs were run with uninstrumented versions of the

Proceedings of the 17th International
Conference on Very Large Data Bases

291 Banxlona. September, 1991

Table 5 Maximum Counts

Program Element Data Set 1 Data Set 2 Data Set 3 Data Set 4
manners

TREAT:

LEAPS:

waltz
TREAT:

LEAPS:

waltzdb
TREAT:

LEAPS:

weaver
TREAT:

LEAPS:

arp
TREAT:

LEAPS:

database 231 702 2,425 8,952
a-memory 797 2,570 9,227 34,856
conflict set 174 552 2,248 9,490
database 231 702 2,425 8,952
a-memory 797 2,570 9,227 34,856
stack 1 1 1 1

database
a-memory
conflict set
database
a-memory
stack

2,749
98,403

3,192
2,749

98,403
4

5,505 8,049 10,805
197,203 288,403 387,203

6,416 9,392 12,616
5,505 8,049 10,805

197,203 288,403 387,203
4 4 4

database
a-memory
conflict set
database
a-memory
stack

3,272
124,056

1,208
3.200

120143 1
2

5,864 8,456 11,048
222,296 320,536 418,776

2,200 3,192 4,184
5,736 8,272 10,808

215,815 311,199 406,583
2 2 2

database 575 8i5
a-memory 150,073 212,632
conflict set 35 359
database 575 815
a-memory 143,128 207,872
stack 2 2

database
a-memory
conflict set
database
a-memory
stack

494
6,439

353
494

6,447
15

1,335
34;s5-92

1’335
348:552

2

1,855
489,232

1,799
1,855

489,232
2

747 920 1,116
10,023 12,440 15,214

601 796 960
741 920 1,116

10,031 12,494 15,278
20 25 30

Table 6 Effects of Using Shared a-Memory

Program Database a-Memory Update Ratio Shared a-Memory Sharing Ratio Update Ratio (S)
manners 1,855 489,232 263.7 12,620 6.8

waltz 8,952 34,856 335.; 9,146 3E
waltzdb 10,805 387,203 36:8 53,205

i*;
weaver 11,048 406,583 19,687 2i.z 1:8
w 1,116 15,278 13.7 13,196 1:2 11.8

Table 7 Total Execution Time (in seconds1

Program
manners

waltz

waltzdb

weaver

Match Alg.
TREAT
LEAPS
TREAT
LEAPS
TREAT
LEAPS
TREAT
LEAPS

arp TREAT
LEAPS

F3wxediigs of the 17th International
Caferace on Very Large Data Bases

Set 1 Set 2

;:!i ‘3
343.3 988.0
147.9 502.1
ciQ1.5 2,109.6
102.9 340.0
170.3 255.8
138.5 232.4
224.3 529.8
96.9 224 ;6

292

Set 3
425.8

10.4
2,963.0
1,353.5
4,341.6

796.8
552.6
416.6
822.1
325.0

Set 4
15,838.5

153.1
3,831.8
2,009.6
8,033.3
1,298.3
1,053.7

680.4
1,220.2

464.2

Barcelona. September, 1991

I
+zG--’ ’

Figure 1: Conflict Set vs Stack

Pmeeedhga of the 17th International
Conference on Very Large Data Bases

Figure 2: Execution Time

293

Table 8 &Memory Tests

Program/Match Alg. Set 1 Set 2 Set 3 Set 4
manners

TREAT:

LEAPS:

Waltz

TREAT

LEAPS:

waltzdb
TREAT:

LEAPS:

weaver
TREAT:

LEAPS:

arp
TREAT:

LEAPS:

Success
&iJ
Total
Success
@iJ
Total

Success
&iJ
Total
Success
Fail
Total

Success
Fail
Total
Success
Fail
Total

Success
&liJ
Total
Success
m
Total

Success
FJg
Total
Success
m
Total

194,806
43.899

238,705
9,996
4,001

13,997

5,772,411

m , I
842,120

23.222522
24,064,642

64,310,313
83.128,182

147,438,495
10,984,240

m s I

12,837,799
12.333.757
25,171,556
10,295,048

l!%% 9 I

12,47 1,770

*w
5:166:769

+B% 1 1

compilers that do not gather statistics. Therefore, the times
provide a good indication of the state of the art in main
memory rule-based system execution, The largest database
size in the applications was 11,048 for waltzdb. Its pro-
gram took 1,298.3 seconds to complete. All of the timing
data was derived from runs on Sun SPARCstation I+
workstations with 64MBytes of main memory and local
disks.

Most of the time spent in these systems goes into the
join work. Joins are performed on the a-memory. Table 8
shows how many times an o-memory element is touched
in the life of the program, The systems we used do not pro-
vide any attribute value based indexing on a-memory. For
large scale database problems this should prove useful. To
gain some insight into how useful it might bc, we counted
both successful and unsuccessful tests (test of an a-memo-
ry element is a test of its value on the join attribute). The
successful tests provide a measure of the minimum
amount of work that must be done by the joins. By divid-
ing the successful tests by the total tests we can also arrive

Proceedings of the 17th International
Conference on Very Large Data Bases

4,246,944

4%%% , ,
142,551
26.226

168,777

126,836,779

13%%%
2:180’071

192:883
2,372,954

e139,524,711
20.165.431

4,189,690,142
3;“;;9;;:

35,652,006

23,048,007 49,2(X31 1 88600,707
167.994.682 359s50.007 649.172.207
19 1X)42,689 409,054,381 737,772,914

3,312,354 7,037,370 12,638,004
93.603,118 200.4259822 36 1.490.547
96,9 15,472 207,463,192 374,128,551

204,316,661
263.469.974
467,786,635
35885,166

$i!-%E I ,

19,333,608
18.384.427
37,718,035
16,192,185
13.317.283
29,509,468

423,272,961
$45.24 1,334
968,5 14,295

75,111,356

l%%% 9 7

37,564,688
41.594.167
79,158,855
32,105,485

$??%-% 1 I

51,553,953

izs%%
17,777,300

4$%#3 1 3

721,179,213
928.442.262

1,649,621,475
128,662,8 10
122.415.631
25 1,078,44 1

62,782,968
89.466.307

152,249,275
53,921,185

32,094,819

m
11:688:013

2M 7 7

25,781,141

m , ,

at an overall join selectivity for the programs. Table 7
shows the join selectivity data. We were somewhat sur-
prised by the high selectivity. However, these databases
are set up to provide specific knowledge to the expert sys-
tcm. This may not be the case at all when an expert system
is used on a general purpose database. In that situation,
join selectivity may be considerably lower.

5 Conclusion

Several clear observations are possible based on the
data gathered. First, a-memory that is not shared may lead
to excessive space requirements and update costs. Second,
the conflict set for some applications does become prob-
lematic as the database grows, in that it exhibits a non-lin-
ear space behavior, Third, the stack size in LEAPS
remains extremely low and constant for most applications.
And, fourth, the lazy matching strategy of LEAPS pro-
vides significant spcedup that improves as the problem
size increases.

294 Barcelona. September, 1991

Table 9 Average Composite Join Selectivity

Program
manners

Waltz

waledb

weaver

arp

Match Alg.
TREAT
LEAPS
TREAT
LEAPS
TREAT
iEAPS
‘-EAT
LEAPS
TREAT
LEAPS

Set 1
0.82
0.71
0.12
0.03
0.44
0.51
0.51
0.54
::iZ

Set 2
0.92
0.84
0.12
0.03
0.44
0.51
0.51
0.55
0.59
0.57

Set 3
0.97
0.92
0.12
0.03
0.44
0.51
0.47
0.56
0.57
0.53

Set 4
0.99
0.96
0.12
0.03
0.44
0.51
0.41
0.55
0.55
0.50

Table 10 Relative Cost/Benefit Ranking of Rule Knowledge --
Knl:,-?edge Type Space-Time Cost Expected Benefit
Concltion Relationship (CR) very high very low
Memory Support (MS) high high
Condition Membership (CM) low high
Conflict Set Support (CS) high moderate
Resolution Support (RS) low high

Based on these results we can complete the cost/benefit
matrix from Table 1. Recall that the values for connict set
support and resolution support were left as question
marks. Table 10 shows the completed comparison. The
high cost of conflict set support is derived from a compari-
son of its space and effects on execution time to the
LEAPS-based approach. Since conflict set support does
enable TREAT to execute faster than Rete-based systems,
its benefit is rated as moderate. From the table we con-
clude that two of the knowledge types, condition membcr-
ship and resolution support, are clearly desired for an
integrated database/rule system. These two obviate the
need for condition relationship and conflict set support.
Therefore, we are now turning our attentions to the last
one - memory support. We feel certain that a more effec-
tive replacement for memory support can be developed.
The key will be to find ways of providing the information
contained in the a-memory without relying on the accom-
panying space. Both TREAT and LEAPS are examples of
this reasoning successfully applied to the problem of inte-
grating rule systems with databases.

6 References
Bein, J., R. King, and N. Kamel, “MOBY: An Architecture

for Distributed Expert Database Systems,” Proceed-
ings of the 13th VLDB Conference, Brighton, 1987.

Blakeley, J.A. and N.L. Martin, “Join Index, Materialized
View, and H
sis”, Procee (Y

brid-Hash Join: A Performance Analy-
ing of the Sixrh Imernutional Conference

on Dara Engineering, pp. 256-263, February, 1990.
Cohen, D., “Compiling Complex Database Transition

Tri gers,” Proc. ACM SKMOD Conference, pp. 225
23$ Portland, Oregon, May, 1989.

Proceedings of the 17th International
Cmference on Very Large Data Bases

Delcambre, L.M.L. and Etheredge, J.N., “The Relational
Production Language: A Production Lan age for
Relational Databases”, Proceedings of the P econd In-
ternan’onal Conference on Expert Database Systems,
1988.

Forgy, C., “OPS5 User’s Manual”, Technical Reporr
CMU-CS-81-135, Carnegie-Mellon University, 1981.

Forgy, C., “RETE: A Fast Match Algorithm for the Many
Pattern/Many Object Pattern Match Problem,” Artifi-
cial Intelligence, no. 19, pp. 17-37, 1982.

Joobbani, R., and D.P. Siewiorek, “WEAVER: A Knowl-
edge-Based Routing Expert,” IEEE Design and Tesf
of Compurers, pp, 12-23, Feb,, 1986.

Kieman, G. , C. de-Maindriville and E. Simon, “Making
Deductive Database a Practical Technology: A Step
Forward,” Report No. 1153, Institute National de Re-
&e;he en Informatique et en Automatique, January,

:
McDermott J., A. Newell, and J. Moore, “The Efficiency

of Certain Production System Implementations,” In
Parlern-directed Inference Systems, D. Waterman and
E Hayes-Roth (eds.), Academic Press, 1978.

Miranker, D., TREAT: A New and Efficient Match Algo-
rithm for Al Production Systems, Pittman/Morgan
Kaufman, 1990.

Miranker; D., B.J. Lofaso, G. Farmer, A. Char&a, and D.
Bran& “On a TREAT Based Production System Com-
piler,” Proceedings of the 10th Inrernalional Confer-
ence on Expert Systems, Avignon, France, 1990.

Miranker, D.P., and D.A. Brant, “An Algorithmic Basis for
Integrating Production Systems and Database Sys-
tems,” Proceedings Sixth international Conference on
Dala Engineering, February, 1990.

Oflazer, K., “Partitioning and Parallel Processing of Pro-
duction Systems,” Dept. of Computer Scicncc, Carn-
egie-Mellon University, 1986.

295 Barcelona, September, 1991

Perk, M.W., “The Match Box Algorithm for Parallel Pro-
duction System Match,” Department of Computer Sci-
ence, Carnegie Mellon University, CMU-CS-89-163,
May, 1989.

Raschid, L., T. Sellis, and C-C Lin, “Exploiting Concur-
rency in a DBMS Implementatian for Production Sys-
tems,” Proceedings of the Internalional Symposium
on Databases in Parallel and Distributed Systems,
1988.

Srivastava, J., K-W Hwang and J. S. Tan, “Parallelism in
Database Production Systems,” Proceeding Sixth In-
ternational Conference on Data Engineering, pp,
121-128, 1990.

Tan, J.S.Eddy, M. Maheshwari, and J. Srivastava, “Grid-
Match: A Basis for Integrating Production Systems
with Relational Databases,” CS TR 90-14, Computer
Science Dept. Univ. of Minnesota, 1990.

Wang, C. K., “Rime: A Match Algorithm for MRL,” Dept.
of Computer Sciences, The University of Texas at
Austin, unpublished manuscript, November, 1989.

Wang, Y-W, and E. Hanson, “A Performance Comparison
of the Rete and TREAT Algorithms for Testing Data-
base Rule Conditions,” Wright State University, Tech-
nical Report WSU-CS-90-18, 1990.

Winston, P., Arfificial Inlelligence, Adison-Wesley Pub-
lishing Co., Reading, Mass., 1984.

Proceedings of the 17th International
Conference on Very Large Data Bases

Barcelona, September, 1991
296

