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Abstract 
Building practical expert database systems re- 
quires an effective inferencing capability over 
large data sets. rnferencing in this context means 
repeatedly executing a fixed set of queries, inter- 
leaved with update transactions, until a fix:3 
pint is reached. The effectiveness of ,.lir- 
cncing mechanism is heavily depcnde; !:on :he 
amount of state space needed and the ability of 
the underlying algorithms to avoid unnecessary 
work. Common techniques used in the design of 
rule-based systems store large amounts of state in 
order to derive precise query support information 
that will enable better performance. These tech- 
niques were intended for use in main memory on 
small data sets and are not ncccssarily suited for a 
database environment. When confronted with a 
large database these techniques may experience 
severe performance problems - severe enough to 
render them useless. In this paper we examine the 
effects of database size on live test cases. The use 
of real programs with real data pr0vidc.s insights 
mat are not to be found through analysis and sim- 
ulation. We compare two different rule systems, 
one based on the TREAT match algorithm and 
the other on LEAPS, a lazy matching algorithm. 
The results show that state can be a problem in 
rule systems and that by using lazy matching it is 
possible to eliminate some state while improving 
performance. 

Introduction 
A practical integrated database/rule system will require 

an efhcient inferencing capability on large databases. Our 
research focuses on active forward chaining inferencing 
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systems and their behavior in a database environment. 
Many studies have been done on various aspects of inte- 
grating rule and database systems. Several have dealt with 
performance issues [Tan. Maheshwari, & Srivastava, 
1990, Cohen, 1989, Wang, 1989, Delcambre & Etheredge, 
1988, Bein, King, & Kamel, 19871. Most of these are ana- 
lytical in nature and/or simulate synthesized rules and 
data. While analytical and simulated approaches to this 
problem are valuable, important issues such as realistic 
query mixes, rule execution order, and join selectivity fac- 
tors, are heavily influenced by both the rule program itself 
and the data on which it operates. Therefore, we have as- 
sembled a suite of live real world programs with automati- 
cally extensible databases for use in understanding rule- 
based system behavior as the size of the database grows’. 
This work is being done in the context of developing DA- 
TEX, a tightly integrated expert database system. 

In the interest of providing effective integration of rule 
execution with database systems, the behavior of incre- 
mental match techniques, first developed for main-memo- 
ry AI systems, is investigated. These techniques take 
advantage of a space-time trade-off and store large 
amounts of state in order to derive precise query support 
information. We explore the utility of TREAT match 
[Miranker, 19901 and compare it against LEAPS [Mirank- 
er & Brant, 19901, a slightly more complicated algorithm, 
with better space characteristics, intended to support infer- 
encing on databases. 

In effect, rule-based systems execute a set of queries, 
interleaved with updates, in a cycle until reaching a fixed 
point. In a naive implementation, this can easily imply ex- 
ecuting ld - lo3 multiway joins each cycle for thousands 
of cycles. In practice, that number is significantly smaller. 
This is due to the key observation that these systems dis- 
play temporal redundancy, i.e., from one cycle to the next, 
there is very little change to the database. Thus, if knowl- 
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edge about the system state is retained across cycles, the 
amount of work done on any one cycle can become quite 
manageable by just incrementally updating that state. In 
the AI community the use of incremental match algo- 
rithms forms the basis of effective main-memory rule exe- 
cution environments [Forgy, 19821. The database problem 
of maintaining a materialized view is an incremental 
match problem without negation. A large number of incrc- 
mental match algorithms have been described. Many of 
the newer ones have been developed for database applica- 
tions IWang, 1990, Blakeley & Martin, 1990, Srivastava, 
Hwang, &Tan, 1990, Raschid, Sellis, & Lin, 19881. 

The problem with incremental matching is that the 
state for most algorithms has an exponential worst-case 
space requirement. For I tuples in a database and a rule 
with j joins, the worst-case state is 0(/J). While real sys- 
tems don’t experience the worst case, any unexpected 
large polynomial space would still present significant con- 
cerns. To explore the possibility that programs might dis- 
play this type of bad behavior, we conducted a scaling 
study in which the databases of five real programs were 
scaled up in size as their performance characteristics were 
measured. The goal was to escape the temptation to use ar- 
bitrary and manufactured values of selectivity for the se- 
lect and join operators of rule systems, and to provide for 
the interaction of many rules acting in concert. Achieving 
this level of realism through analysis and simulation is ex- 
tremely difficult, if not impossible. 

The programs in the test suite are written in OPSS 
[Forgy, 19811. While OPSS may he widely regarded as an- 
tiquated, it nonetheless embodies many of the underlying 
AI techniques used in other, more powerful, languages. 
Moreover, since OPS5 has been around for such a long 
time there exist public domain systems and numerous pro- 
grams. Our empirical data was gathcrcd using two of the 
best performing OPSS-based systems in existcncc. Both 
are compiled systems. The first uses a TREAT match algo- 
rithm which has been shown to be superior to the more 
widely used Rete match for most programs. The second 
uses a relatively new technique, called LEAPS, based on 
the idea of lazy mafching. 

Section 2 presents a brief description of rule-based sys- 
tems, the four knowledge types that can be employed by 
their incremental match algorithms, and an overview of 
some of the published algorithms. In section 3 we describe 
the metrics used in the study and the test cases. Section 4 
presents our empirical results. Section 5 contains a sum- 
mary and our concluding remarks. 

2 Rule-Based Systems 
A rule-based program is a set of rules of the form if 

Pp.../\p, then Al ,..., A,,, 
where PI~...hpn is a conjunction of n conditions or 

predicates on the current state of the base relations of the 
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database, and Al,...,A, is a set of m actions or update 
transactions on the database. In a relational model, each Pi 
is a predicate on a single relation. These predicates may 
contain constants and variables. Predicates containing 
constants can be partially evaluated with the relational se- 
lect operator. If predicates share a variable, it must be con- 
sistently bound between them for the predicates to be 
satisfied. This is accomplished by a relational join operator 
(including both equijoin and non-equijoin). Execution of 
the program proceeds by evaluating the predicates, choos- 
ing one rule whose predicates are satisfied, executing its 
actions, and repeating the cycle until a fixed point is 
reached. 

2.1 Query Support and Match Algorithms 

Each unique set of tuples that satisfies a rule’s predi- 
cates, P+.JV,, is an instantiation. Thus, the set of in- 
stantiations at any one time is composed of the union of 
the temporary relations resulting from the queries associat- 
ed with those predicates. A critical component of any rule- 
based system is the match algorithm that computes instan- 
tiations. A naive algorithm for finding the instantiations of 
the rules would execute the query associated with each 
rule’s predicates against the entire database on each cycle. 
That approach is combinatorially explosive and computa- 
tionally intractable. To address this problem, rule-based 
systems maintain state information from cycle to cycle. 
This information provides query support for the match al- 
gorithm. The knowledge provided by the state information 
has been divided into four categories [McDermott, New- 
ell, and Moore, 1978, and Miranker, 19901. 
1. Condifion Membership: Associated with each Pi is a 

running count of the number of tuples that satisfy its 
select operation. This information is used to identify 
rules that arc active, i.e., those with a non-zero count 
for each Pi. lnaclive rules may bc ignored by the match 
algorithm. 

2. Memory Supporl: Provides explicit knowledge about 
precisely which tuples satisfy the selects of which Pi. 
These have been referred to as a-memory. If a separate 
set of tuples is maintained for each Pi, duplicate infor- 
mation will be stored for those predicates that have the 
same select criteria on the same relation. Those sys- 
tems that eliminate this redundant data are said to use 
shared a-memory. 

3. Condition Relationship: Provides knowledge about the 
interaction of predicates, i.e., the intermediate results 
of multiway joins are explicitly stored from cycle to 
cycle. These have been referred to as P-memory. 

4. Conjlicl Set Supporl: the conjlicf set containing all of 
the instantiations for all rules is retained from cycle to 
cycle. 
We have added a fifth knowledge type based on a lazy 

approach to query evaluation. We call the new type Reso- 
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Table 1 Relative Cost/Benefit Ranking of Rule Knowledge 

Knowledge Type Space-Time Cost Expected Benefit 
Condition Relationship (CR) very high very low 
Memory Support (MS) high high 
Condition Membership (CM) low high 
Conflict Set Support (CS) ? ? 
Resolution Support (RS) ? ? 

Table 2 Match Algorithms and Their State Information 

Algorithm 
Rete porgy, 19821 
TREAT [Miranker, 19901 
Lazy [Miranker & Bran& 19901 
Matchbox [Perlin, 19891 
Gridmatch [Tan, Maheshwari, & Srivastava, 19901 
unnamed machid, Sellis, & Lin, 19881 
Rime [Hwang, 19891 
unnamed [Oflazer, 19861 

lution Support. An underlying theme in current match al- 
gorithms is the eager evaluation of all active rules to 
generate all possible instantiations. However, on any given 
cycle only one instantiation is chosen to fire one rule. The 
choice is based on a conflict set resolution strategy. This 
observation has led to the development of LEAPS, a lazy 
matching algorithm that computes a fireable instantiation 
by using the conflict set resolution strategy to direct a best- 
first search. In doing so, it eliminates the conflict set and 
replaces it with a stack containing the state information 
needed to control a demand driven stream-based query 
process. Thus, key issues include the effects lazy matching 
has on performance and its space requirements compared 
to eager schemes. 

Table 1 shows the knowledge techniques with a sum- 
mary of their relative cost and expected benefit, As can be 
seen, the merits of using conflict set support versus resolu- 
tion support are left as an open qucslion. We will attempt 
to resolve these question marks based on the case studies 
in the following sections. 

The values that are given in Table 1 are based on sever- 
al observations. Since condition relationship stores the re- 
sults of all intermediate joins it is given a very high space- 
time cost. Furthermore, TREAT, which does not use this 
knowledge, consistently outperforms match algorithms 
which do. Therefore, its expected benefit is stated as very 
low. 

Memory support stores all of the intermediate results 
of select operations. Since there is a one to many mapping 
from the database to a-memory, the cost is generally high 
for this knowledge. However, when the selectivity of the 
constant tests is reasonably low (as it is for most systems 
measured), the expected benefit in increasing the speed of 
joins is also high. 

Condition membership is low in space cost since it 
only requires a few bytes to implement. If memory support 

Pfoceedmgs of the 17th International 
Conferencz on Very Large Data Bases 
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5 5 
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s J 
J J 

is implemented, then its time cost is also extremely low, 
since all of the select operations will have to be performed 
anyhow. If memory support is not used then its time cost 
might be more accurately stated as moderate, as it will 
then have to do its own select operations. 

Table 2 lists some of the match algorithms in the litera- 
ture and their associated knowledge types. While not obvi- 
ous, the selection of some knowledge types makes others 
of little use. For instance, if condition relationship is cho- 
sen, then condition membership may provide little or no 
benefit. Therefore, it is probably not reasonable to expect 
any one algorithm to use all of them. 

2.2 Match Algorithms 

Most rule systems in use today are based on some form 
of the Rete match. The two exceptions that we are aware 
of are TREAT and LEAPS. The following sections dc- 
scribe these at a high Icvcl. 

2.2.1 Rete 
The Rete match incorporates memory support and con- 

dition relationship, It compiles the queries of the rules into 
a discrimination network in the form of an augmented 
dataflow network. The input portion of the Rete network 
contains chains of tests that perform the relational select 
operations. Tokens passing through those chains partially 
match a particular predicate and are stored in a-memory 
nodes, thus forming the memory support part of the algo- 
rithm. Following the a-memories are two-input nodes that 
test for consistent variable bindings between predicates. 
By analogy, these nodes incrementally compute the join of 
the memories on the input arcs. When a token enters a 
two-input node it is compared against tokens in the memo- 
ry of the opposite arc. Paired tokens with consistent vari- 
able bindings are stored at the output of the two-input 
nodes as p-memories. Tokens that propagate from the last 
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p-memories in the network reflect changes to the conflict 
set. 

The Rete algorithm is the basis for most rule-based 
systems in use today. 

2.2.2 TREAT 

It has been shown that the condition relationship infor- 
mation contained in the P-memory is not justified from a 
performance standpoint in main-memory systems 
[Miranker, Lofaso, Farmer, Chandra, & Brant, 19901 and 
this result has been recently extended to databases as well 
Wang & Hanson, 19901. The TREAT match algorithm 
does not use p-memories and has been shown to consis- 
tently outperform Rete-based systems. The rationale for 
this is due to the effects of the removal of tuples from the 
system. In general, Rete must do as much work to delete a 
tuple as it does to add one. TREAT does much less work 
on removals since it does not have to update the intermedi- 
ate join results. TREAT does do slightly more work than 
Rete when tuples are added, but for most programs, the 
trade-off favors TREAT. 

From a database perspective, obviating the need for 
maintaining intermediate join results is crucial, since they 
constitute the largest consumer of memory in Rete-based 
systems. However, TREAT still makes use of three catego- 
ries of state information - condition membership, memory 
support, and conflict set support. It is intcrcsting to note 
that TREAT represents a case of reducing space requirc- 
ments while at the same time improving performance. 

2.2.3 LEAPS 

An underlying theme in both Rete and TREAT is the 
eager evaluation of all active rules to generate all possible 
instantiations, However, on any given cycle only one in- 
stantiation is used to fire one rule. This observation has led 
to the development of the lazy matching algorithm known 
as LEAPS. LEAFS computes at most one instantiation on 
any given cycle. This is done by setting up demand driven 
data streams used to produce instantiations. In doing so, it 
eliminates the conflict set and replaces it with a stack. The 
stack contains information needed to restart streams that 
have been temporarily suspended due to the processing of 
a higher priority stream. One of the issues to be examined 
in the study is how big of a space problem is the conflict 
set and is the stack an improvement. 

3 The Test Suite and Metrics 

3.1 The Programs and Data Generators 

Each of the selected programs was chosen for a specif- 
ic reason. The goal was to achieve a diversity in terms of 
the number of rules, the AI problem solving technique em- 
ployed, and the problem domain, First, it was necessary to 
be able to generate randomly large databases for the pro- 
grams to work on. It was also desirable that these databas- 
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es be automatically produced under controlled parameters. 
Second, we wanted a set of programs that varied consider- 
ably in size and complexity. The resulting suite contains 
programs that range from several rules to over seven hun- 
dred rules. And, third, we wanted to chose a set of pro- 
grams that spanned the range of standard expert system 
problem solving techniques, e.g., constraint propagation, 
blackboards, and A* search. Table 3 provides a summary 
of the major characteristics of the test suite. 

Table 3 Program Summaries 

Name No. of Rules Comment 
manners 8 Finds a seating arrangement for 

rslinint; guests by depth-first 

waltz 33 Waltz iine labeling for simple 
scenes by constraint propagation. 

waltzdb 35 A more database oriented version 
of Waltz line labeling for com- 
plex scenes by constraint propa- 
gation. 

ARP II8 Route planner for a robotic air 
vehicle using A*. 

weaver 637 A VLSI router using a black- 
board technique. 

3.1.1 Manners 

Manners was derived from a program appearing in Ki- 
eman, de-Maindrivillc. & Simon, 1990. It is based on a 
depth-first search solution to the problem of Anding an ac- 
ceptable seating arrangement for guests at a dinner party. 
The particular seating protocol enforced by the version 
used in this study ensures that each guest is seated next to 
someone of the opposite sex who shares at least one hob- 
by. The manners program can be extended quite easily to 
handle many different criteria for constraining the seating 
arrangement. Further it is very easy to adjust the join se- 
lectivity of the program by controlling the distribution of 
the hobbies. The data used in this study gave a uniform 
distribution of hobbies from a minimum of 2 to a maxi- 
mum of 5 per guest. Guests were evenly divided into male 
and female. 

3.1.2 Waltz and Waltzdb 

Waltz was developed at Columbia University. It is an 
expert system designed to aid in the 3-dimensional inter- 
pretation of a 2-dimensional line drawing. It does so by la- 
beling all lines in the scene based on constraint 
propagation. Only scenes containing junctions composed 
of two and three lines are permitted. The knowledge that 
Waltz uses is embedded in the rules. The constraint propa- 
gation consists of 17 rules that irrevocably assign labels to 
lines based on the labels that already exist. Additionally, 
there are 4 rules that establish the initial labels. The rules 
provide the explicit constraint information by means of 
constant tests - thcrc is no generalized form of constraint 
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propagation. The significance of this became apparent 
when we tried to expand the Waltz program to handle the 
more general case of line drawings involving junctions 
composed of 4, 5, and 6 lines. This resulting program is 
called waltzdb. 

Waltzdb was developed at the University of Texas at 
Austin. It is more general version of the Waltz program 
described in the previous section. Walkdb is designed so 
that it can be easily adapted to support junctions of 4, 5, 
and 6 lines. The method used in solving the labeling prob- 
lem is a version of the algorithm described by Winston 
[Winston, 19841. The key difference between the problem 
solving technique used in waltz and waltzdb is that 
waltzdb uses a database of legal line labels that are applied 
to the junctions in a constrained manner. In Waltz the con- 
straints are enforced by constant tests within the rules. 

The input data for waltz is a set of lines defined by 
Cartesian coordinate pairs, The data generator uses a base 
drawing consisting of 72 lines which we refer to as a re- 
gion. The user can specify any number of regions to be 
generated. We have run test cases with as many as 100 rc- 
gions. 

time dominates the overall execution time for these sys- 
tems, the second measure is the number of times an a- 
memory is touched in the joins of the matching algorithm. 
This is further broken down into successful versus unsuc- 
cessful tests. Successful tests are important in that they in- 
dicate the minimum work necessary given a perfect 
indexing method on the join attributes. 

4 Results 
Each program was run with four equally spaced sets of 

data points (shown in Table 4). Table 5 shows the counts 

Table 4 Initial Database Size 

Program 
manners 
Waltz 

waltzdb 
ARP’ 

Set 1 
16 

iii 

Set 2 
Set643 “%i 

18:; 2664 3600 
576 864 1152 

3.1.3 ARP 

The Aeronautical Route Planner calculates the lowest 
:ost route between two points for an airplane or missile. It 
calculates the route based on terrain, threat, and cost data. 
The route will avoid terrain and surface-to-air missile sites 
(the threats). ARP minimizes three costs for a roulc: the 
cost of travelling a distance, the cost of being at an alti- 
tude, and the cost of being at a height above the terrain. 
ARP uses the A* search algorithm to restrict the portion of 
the search space it needs to examine to calculate the route. 
The input data is a database of terrain information for a 
given corridor. 

3.1.4 Weaver 

Weaver is an expert system designed to perform VLSI 
channel and box routing [Joobbani & Siewiorek, 19861. It 
is a large complex program that is made up of several in- 
dependent expert systems communicating via a common 
blackboard. Its input data is a list of pins, nets. and channel 
dimensions. 

weaver :Yl 
106 106 106 
791 1311 1831 

of the measured elements at the point when they were at 
their maximum. There are several things to notice in this 
data. First, the stack is very small and remains that way as 
database size increases. In fact, for four of the five pro- 
grams it .is a small constant. Contrast this to the size of the 
conflict set and its growth. Figure 1 graphs this data for all 
five programs, Also note that we have identified non-linear 
behavior for the conflict set in the manners program, 

Another interesting aspect of these programs was the 
size of the (x-memory. Both of the systems used to gather 
the data do not implement sharing of a-memory, but clear- 
ly the dominant space factor is a-memory. We compared 
the a-memory size to the maximum size of the database 
during the program execution and discovered that the rep- 
lication factor of data in the a-memory was much higher 
than anticipated. Table 6 compares the maximum size of 
the database with the measured maximum a-memory size 
(columns 2 and 3). Based on this data we calculated the 
average number of a-memory entries required for each da- 
tabase entry, Since any change to the database requires 
changes to the a-memory, this can also be interpreted as 
an update ratio (column 4). 

3.2 Metrics 

In order to minimize the affects of constants we have 
chosen to represent all of the memory usage in terms of 
the number of data elements. Data elements for both 
TREAT and LEAPS include the tuplcs of the database and 
a-memory. TREAT also contains entries in the conflict set, 
while LEAPS keeps a stack. 

In order to analyze the effects of using shared a-mem- 
ory, we used traces of the executions to drive a shared a- 
memory simulator. The result is shown in column 5. By 
dividing the measured data in column 3 with the simulated 
data in column 5 we derived the average sharing ratio, i.e., 
the number of a-memory entries that are subjected to the 
same select operator. The result was surprising and dem- 
onstrated the clear benefits of using sharing. The last col- 
umn shows the expected a-memory updates per database 
change based on sharing. 

There are two primary measures of time used in this Table 7 shows the total execution time for the test pro- 
study. The first is the overall execution time of the pro- grams. The data is graphed in Fig. 2. To get these times the 
grams in terms of the number of cpu seconds. Since match programs were run with uninstrumented versions of the 
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Table 5 Maximum Counts 

Program Element Data Set 1 Data Set 2 Data Set 3 Data Set 4 
manners 

TREAT: 

LEAPS: 

waltz 
TREAT: 

LEAPS: 

waltzdb 
TREAT: 

LEAPS: 

weaver 
TREAT: 

LEAPS: 

arp 
TREAT: 

LEAPS: 

database 231 702 2,425 8,952 
a-memory 797 2,570 9,227 34,856 
conflict set 174 552 2,248 9,490 
database 231 702 2,425 8,952 
a-memory 797 2,570 9,227 34,856 
stack 1 1 1 1 

database 
a-memory 
conflict set 
database 
a-memory 
stack 

2,749 
98,403 

3,192 
2,749 

98,403 
4 

5,505 8,049 10,805 
197,203 288,403 387,203 

6,416 9,392 12,616 
5,505 8,049 10,805 

197,203 288,403 387,203 
4 4 4 

database 
a-memory 
conflict set 
database 
a-memory 
stack 

3,272 
124,056 

1,208 
3.200 

120143 1 
2 

5,864 8,456 11,048 
222,296 320,536 418,776 

2,200 3,192 4,184 
5,736 8,272 10,808 

215,815 311,199 406,583 
2 2 2 

database 575 8i5 
a-memory 150,073 212,632 
conflict set 35 359 
database 575 815 
a-memory 143,128 207,872 
stack 2 2 

database 
a-memory 
conflict set 
database 
a-memory 
stack 

494 
6,439 

353 
494 

6,447 
15 

1,335 
34;s5-92 

1’335 
348:552 

2 

1,855 
489,232 

1,799 
1,855 

489,232 
2 

747 920 1,116 
10,023 12,440 15,214 

601 796 960 
741 920 1,116 

10,031 12,494 15,278 
20 25 30 

Table 6 Effects of Using Shared a-Memory 

Program Database a-Memory Update Ratio Shared a-Memory Sharing Ratio Update Ratio (S) 
manners 1,855 489,232 263.7 12,620 6.8 

waltz 8,952 34,856 335.; 9,146 3E 
waltzdb 10,805 387,203 36:8 53,205 

i*; 
weaver 11,048 406,583 19,687 2i.z 1:8 
w 1,116 15,278 13.7 13,196 1:2 11.8 

Table 7 Total Execution Time (in seconds1 

Program 
manners 

waltz 

waltzdb 

weaver 

Match Alg. 
TREAT 
LEAPS 
TREAT 
LEAPS 
TREAT 
LEAPS 
TREAT 
LEAPS 

arp TREAT 
LEAPS 

F3wxediigs of the 17th International 
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Set 1 Set 2 

;:!i ‘3 
343.3 988.0 
147.9 502.1 
ciQ1.5 2,109.6 
102.9 340.0 
170.3 255.8 
138.5 232.4 
224.3 529.8 
96.9 224 ;6 

292 

Set 3 
425.8 

10.4 
2,963.0 
1,353.5 
4,341.6 

796.8 
552.6 
416.6 
822.1 
325.0 

Set 4 
15,838.5 

153.1 
3,831.8 
2,009.6 
8,033.3 
1,298.3 
1,053.7 

680.4 
1,220.2 

464.2 
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Figure 1: Conflict Set vs Stack 

Pmeeedhga of the 17th International 
Conference on Very Large Data Bases 

Figure 2: Execution Time 
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Table 8 &Memory Tests 

Program/Match Alg. Set 1 Set 2 Set 3 Set 4 
manners 

TREAT: 

LEAPS: 

Waltz 

TREAT 

LEAPS: 

waltzdb 
TREAT: 

LEAPS: 

weaver 
TREAT: 

LEAPS: 

arp 
TREAT: 

LEAPS: 

Success 
&iJ 
Total 
Success 
@iJ 
Total 

Success 
&iJ 
Total 
Success 
Fail 
Total 

Success 
Fail 
Total 
Success 
Fail 
Total 

Success 
&liJ 
Total 
Success 
m 
Total 

Success 
FJg 
Total 
Success 
m 
Total 

194,806 
43.899 

238,705 
9,996 
4,001 

13,997 

5,772,411 

m , I 
842,120 

23.222522 
24,064,642 

64,310,313 
83.128,182 

147,438,495 
10,984,240 

m s I 

12,837,799 
12.333.757 
25,171,556 
10,295,048 

l!%% 9 I 

12,47 1,770 

*w 
5:166:769 

+B% 1 1 

compilers that do not gather statistics. Therefore, the times 
provide a good indication of the state of the art in main 
memory rule-based system execution, The largest database 
size in the applications was 11,048 for waltzdb. Its pro- 
gram took 1,298.3 seconds to complete. All of the timing 
data was derived from runs on Sun SPARCstation I+ 
workstations with 64MBytes of main memory and local 
disks. 

Most of the time spent in these systems goes into the 
join work. Joins are performed on the a-memory. Table 8 
shows how many times an o-memory element is touched 
in the life of the program, The systems we used do not pro- 
vide any attribute value based indexing on a-memory. For 
large scale database problems this should prove useful. To 
gain some insight into how useful it might bc, we counted 
both successful and unsuccessful tests (test of an a-memo- 
ry element is a test of its value on the join attribute). The 
successful tests provide a measure of the minimum 
amount of work that must be done by the joins. By divid- 
ing the successful tests by the total tests we can also arrive 
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at an overall join selectivity for the programs. Table 7 
shows the join selectivity data. We were somewhat sur- 
prised by the high selectivity. However, these databases 
are set up to provide specific knowledge to the expert sys- 
tcm. This may not be the case at all when an expert system 
is used on a general purpose database. In that situation, 
join selectivity may be considerably lower. 

5 Conclusion 

Several clear observations are possible based on the 
data gathered. First, a-memory that is not shared may lead 
to excessive space requirements and update costs. Second, 
the conflict set for some applications does become prob- 
lematic as the database grows, in that it exhibits a non-lin- 
ear space behavior, Third, the stack size in LEAPS 
remains extremely low and constant for most applications. 
And, fourth, the lazy matching strategy of LEAPS pro- 
vides significant spcedup that improves as the problem 
size increases. 
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Table 9 Average Composite Join Selectivity 

Program 
manners 

Waltz 

waledb 

weaver 

arp 

Match Alg. 
TREAT 
LEAPS 
TREAT 
LEAPS 
TREAT 
iEAPS 
‘-EAT 
LEAPS 
TREAT 
LEAPS 

Set 1 
0.82 
0.71 
0.12 
0.03 
0.44 
0.51 
0.51 
0.54 
::iZ 

Set 2 
0.92 
0.84 
0.12 
0.03 
0.44 
0.51 
0.51 
0.55 
0.59 
0.57 

Set 3 
0.97 
0.92 
0.12 
0.03 
0.44 
0.51 
0.47 
0.56 
0.57 
0.53 

Set 4 
0.99 
0.96 
0.12 
0.03 
0.44 
0.51 
0.41 
0.55 
0.55 
0.50 

Table 10 Relative Cost/Benefit Ranking of Rule Knowledge -- 
Knl:,-?edge Type Space-Time Cost Expected Benefit 
Concltion Relationship (CR) very high very low 
Memory Support (MS) high high 
Condition Membership (CM) low high 
Conflict Set Support (CS) high moderate 
Resolution Support (RS) low high 

Based on these results we can complete the cost/benefit 
matrix from Table 1. Recall that the values for connict set 
support and resolution support were left as question 
marks. Table 10 shows the completed comparison. The 
high cost of conflict set support is derived from a compari- 
son of its space and effects on execution time to the 
LEAPS-based approach. Since conflict set support does 
enable TREAT to execute faster than Rete-based systems, 
its benefit is rated as moderate. From the table we con- 
clude that two of the knowledge types, condition membcr- 
ship and resolution support, are clearly desired for an 
integrated database/rule system. These two obviate the 
need for condition relationship and conflict set support. 
Therefore, we are now turning our attentions to the last 
one - memory support. We feel certain that a more effec- 
tive replacement for memory support can be developed. 
The key will be to find ways of providing the information 
contained in the a-memory without relying on the accom- 
panying space. Both TREAT and LEAPS are examples of 
this reasoning successfully applied to the problem of inte- 
grating rule systems with databases. 
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