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ABSTRACT

Due to the similarities between Al production rules
and relational database queries with updates, it ap-
pears straightforward to integrate the two systems to
form an active database system. However, a large
rule system represents on the order of hundreds or
thousands of concurrent transactions, each repeated
on every cycle. Executing such a large number of
transactions on a large database within a short
amount of time is computationally stressful. Main-
memory resident production systems have been
made computationally feasible by the development of
incremental match algorithms that exploit the tem-
poral redundancy of the database by saving results
computed in prior cycles. Unfortunately, the worst-
case space complexity of these match algorithms is
exponential and space management becomes a domi-
nant issue. In this paper we present a lazy incre-
mental match algorithm wi linear worst-case
space complexity. Moreover, initial empirical re-
sults show that we prune 60% of the search for rule
instantiations. We feel that these results provide the
first reasonable algorithmic basis upon which one
can develop an active database system.

1.0 Introduction

There is a large and growing body of research direct-
ed toward the integration of relational database and
expert system technologies. Simple rules for enforc-
ing database constraints or monitoring the database
and automatically retrieving and updating data can
be handled through alerters [1] and triigers [2]. Ad-
aptations of view materialization [3,4] have been de-
scribed for implementing restricted rule systems.
More recently, gellis, Lin, and Raschid have been de-
veloping a system which manages large rule bases
using a relational database management system
(DBMS) in a production system environment [5,6].
Perhaps the largest effort is the POSTGRES project
[7]. Stonebraker and Rowe have reported extensively
on their efforts to develop an INGRES successor hav-
ing the ability to provide inferencing, with both for-
ward and backward chaining. Work is also being
done to address the architecture requirements of
knowledge based systems [8-10]. These and other re-
search projects have confirmed the extraordinary
time and space demands one might expect from in-
ferencing on large databases. While the average
space requirements do not approach worst case, the
variance in required space over the life of the system
is often extremely large and unpredictable.
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Our work focuses on the problem of using the produc-
tion system paradigm as the deductive component of
an expert database system. One of the fundamental
issues is the exponential worst-case space require-
ment inherent in existing production system match
algorithms [6,11,12]. Although worst case is rarely
(if ever) achieved, it is entirely possible for such algo-
rithms to unexpectedly exhaust all of the available
storage in large virtual memory computer systems
[9]. Therefore, before dealing directly with perfor-
mance issues related to inferencing on large databas-
es, our current work develops an algorithmic basis
for matching that is better tlll)an current match algo-
rithms in its space requirements. Toward that end,
we have developed a new match algorithm which
has a linear worst-case space complexity. This new
algorithm serves as the basis for our investigations
into an active database system. Before describing the
algorithm, production systems and their relational
interpretation are presented in section 2. Section 3
describes the new match algorithm and section 4
briefly describes an architecture to support the algo-
rithm. Section 5 summarizes our current work.

2.0 Production Systems and
Relational Databases

In general, a production system is defined by a set of
rules, or productions, that form the production mem-
g;ly, together with a database of current assertions,

led the working memory (WM). Each production
has two parts, the left-hand side (LHS) and the right-
hand side (RHS). The LHS contains a conjunction of
pattern elements, or condition elements, that_ are
matched against the working memory. The RHS
contains directives that update the working memory
by adding or deleting facts, and directives that carry

out external side effects such as I/O. In operation, a

production system interpreter repeats the following

recognize-act cycle:

(1) Match. For each rule, compare the LHS against
the current WM. Each subset of WM elements
satisfying a rule’s LHS is called an instantiation.
glll instantiations are enumerated to form the con-

ict set.

(2) Select. From the conflict set, chose a subset of in-
stantiations according to some predefined crite-
ria. In practice a single instantiation is selected
from the conflict set on the basis of the recency,
specificity, and/or rule priority of the matched da-
ta in the WM.

(3) Act. Execute the actions in the RHS of the rules
indicated by the selected instantiations.



Production systems can be viewed from a relational
database (RDB) perspective, in much the same way
that logic programming can be mapped to relational
databases [13]. This observation allows a single
framework within which both production systems
and RDBs can be discussed.

2.1 Working Memory as a Relational
Database

A working memory element (WME) forms the user’s
conceptual view of an object and consists of a class
name followed by a list of attribute-value pairs. A
class name identifies an object and the attribute-val-
ue pairs describe a particular instance of that object.
Each WME has a unique identifier (ID) associated
with it. IDs are often implemented as a strictly in-
creasing sequence of integers assigned when the
WME was created or last modified. They may be con-
strued as timestamps or as logical pointers to individ-
ual WMEs. In most production systems, IDs are
used in the conflict set resolution criteria. Consider
the WME, shown below, used to describe a red cube
named c¢_1, with a mass of 100, and having a length
of 10 (attributes names are distinguished by a preced-
ing " operator).

(cube “name ¢_1 “~color red “mass 100 ~len 10)

A simple mapping of WMEs to an RDB can be made
by interpreting a class name as a relation name and
the attribute names within a class as _attribute
names in the respective relation. The resulting rela-
tion is then augmented with an attribute correspond-
ixﬁ to the ID. Thus, arbitrarily assuming an ID
value of 506, the %articular instance of the cube object
above would e represented as the tuple
<506,c_1,red,100,10> in the relation
cube(ID,name,color,mass,len).

2.2 Productions as Relational Queries

A production’s LHS consists of a conjunction of con-
dition elements (CEs). It contains one or more non-
negated CEs and zero or more negated CEs. Negated
CEs are distinguished by a preceding negative sign.
The LHS is saj(ﬁ,uo be satisfied when:
(1) for each non-negated CE, there exists at least one
matching WME, and,
(2) for all negated CEs, there do not exist any match-
ing WMEs.
Each CE consists of a class name and one or more
terms. Each term specifies an attribute within the
class and a predicate to be evaluated against the val-
ues of that attribute. A CE need not reference all of
the attributes contained in its corresponding class
The class is projected onto the named attributes in
the CE. Those not named do not affect the match cri-
teria. Predicates consist of a comparison operator
(<,>,=,5,2, or #) followed by a constant or variable. A
predicate containing a constant is true with respect
to a WME if the corresponding attribute value in the
WME matches the predicate. For example, consider
the CEs and corresponding WMEs shown in Fig. 1.
CE (a) matches WMEs (1) and (38), while CE (b)
matches only WME (1). Constants within condition
elements can be mapped to relational SELECT opera-
tions (o).

CEs “cube” WMEs
name color mass len
1) ¢c1 red 6 8
2) ¢_2 blue 11 5
3)c3red 1 3

a) (cube “mass<10)
b) (cube “mass<10 "len>5)

Figure 1. Predicate Matching

The scope of a variable is the production in which it
appears, and, therefore, all occurrences of a variable
within a given LHS must be bound to the same value
in working memory for the LHS to be satisfied. For
condition elements containing variables, a mapping
can be made to a relational JOIN operation (®). The
JOIN operator will ensure that a givenr variable is
congistently bound for all of its occurrences within a
LHS.

To further describe the mapping of LHSs to relation-
al algebra, the concept of CE dependence is intro-
duced. A set of CEs within a given rule are said to be
dependent if they share variable names. The instan-
tiations for a production consist of the Cartesian
product (x) of the results returned by the subqueries
corresponding to the sets of dependent condition ele-
ments. For example, consider the mapping of the
production containing two sets of dependent condi-
tion elements {Cq,C1} and {Cg, C3} shown in Fig. 2.

Production Rule:
(P Example
(Cg *Ap<12 AAq<x>)
(Cl AA1<X>)
(Cq AAg<y>)
(Cz MAg<y> "Ag>T)
---> actions)

Corresponding Qu

« O a;>7C3)

(¢) C ® CIX(C. ® (
Ag<12 0)(co.A1=c1.A1) (e 2(Cp.A2=C3.A2)
Figure 2. Mapping Dependent CEs

To simplify the mapping of negated CEs we intro-
duce a new operator called NOT-JOIN (—~®). It is de-
fined as R —® S=R - z(R ® S)=R - (R SEMIJOIN 8).

Production Rule:
(P Example

(C, "NAy<x>)
(CrAj<x> MNA <y>)
-(C,*A<y>)
---> actions)
Corresponding Que:
(Cy ® (o -® C)
(Co.A0=C1.Ag) (C1.A1=C2.A)

Figure 3. Mapping Negated CEs



Using this operator we can map LHSs containing ne-
gated CEs (see Fig. 3).

2.3 Current Matching Algorithms

A naive algorithm for finding the instantiations of
the rules (i.e., matching) woulg execute the query as-
sociated with each rule’s LHS against the entire data-
base on each cycle. That approach is combinatorially
explosive and computationally intractable. However,
the database in a production system is temporally re-
dundant; i.e., on each cycle only a small subset of
the working memory changes. Rather than reverify
the satisfaction of each rule on every cycle, produc-
tion system interpreters use incremental match algo-
rithms. incremental match algori
maintains the results of the previous cycle’s match
phase (the joins and Cartesian products) and com-
putes only the incremental change to the conflict set
that resuits from the incremental change to the data-
base. Consider the rule shown in Fig. 3. If a new tu-
ple, T, is added to the relation Co then the following
query can be used to find all new instantiations creat-
ed by that tuple and update the conflict set.

New_Conflict_Set:=Conflict_Set U

T _ ©

C Co)).
(T-A(FCI-AO)( 2)

1. —®
(C1.A1=C2.Ay)

Updating the conflict set when deleting T from C, is
accomplished by

New_Conflict_Set:= Conflict_Set -

T ® (G -8 Cy.
(TA=C1AD) L(CLA=C2AD 2

Several incremental match algorithms appear in the
literature [6,11,12]. All of these algorithms trade
space for time and have a worst-case space complexi-
ty of at least O(n¢), where n is the size of the database
and ¢ is the maximum number of conditions in a
rule. Although the average-case behavior is much
better, it is still impractical if not impossible to store
the internal state of these match algorithms for large
databases.

The semantics of production systems, in conjunction
with the operation of currently accepted production
system match algorithms, demand that all instantia-
tions of all rules be enumerated before one instantia-
tion is selected for firing. The conflict set itself has a
worst-case space of O(n¢) and a highly volatile aver-
age space requirement. Tables 1, 2, and 3 show sta-
tistics for some OPS5 benchmarks presented in the
literature [8,11]. From Tables 1 and 2 it can be seen
that the size of the conflict set and its standard devia-
tion are—significant when compared to the working
memory size [14]. Further, instantiations are often
computed, entered into the conflict set, and subse-
quently removed, without ever firing. In a strong
sense, the time and space required to compute and
store these instantiations is wasted. An algorithm
that avoids enumerating instantiations may avoid
much of the wasted computation and space. Some
initial results have been gathered on the effective-
ness of lazl); matching at pruning the search space.
These are shown in Table 3.
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Table 1. Working Memory Statistics

Program Max. WM Size Avg. WM Size Std. Dev.
WALTZ 50 42.29 10.34
ROBOT 17 15.2 2.6
TOURNEY 279 123.1 44.66
JIG25 100 50.12 29.82
MESGEN 38 33.71 1.96

Table 2. Conflict Set Statistics

Program Max, CS Size Avg. CS Size Std. Dev.
WALTZ 66 11.43 14.76
ROBOT 13 4.58 2.93
TOURNEY 881 138.30 203.47
JIG25 169 88.41 49.85
MESGEN 14 3.82 3.97

Table 3. Search Pruning

Inst- Rule Unused Inst- %
Program antiations Firings antiations Unused
WALTZ 151 70 81 54
ROBOT 478 410 68 14
TOURNEY 2324 528 1796 77
JIG25 205 58 147 72
MESGEN 860 138 722 84

For the applications analyzed, an average of 60% of
the instantiations computed by TREAT or RETE are
never fired. The next section describes a “lazy” way
to match rules in a production system. The idea is
similar to the lazy evaluation used in functional pro-
gramming languages; i.e., a function calculates its
values only as they are needed. The Lazy Match has
a worst-case space characteristic of O(n*c).

3.0 A Lazy Matching Algorithm

The following describes a method for computing pro-
duction instantiations in a lazy manner. This is ac-
complished by executing a best-first search for
instantiations. Since the database may change from
cycle to cycle, the best-first search must be capable of
responding to a dynamic search space. The initial
requirements for lazy matching are:

(1) maintain a total ordering in the generation of an

instantiation, and
(2) ensure that a given instantiation is fired only
once.

If the total ordering in the first requirement is by
timestamp (i.e. ID), a search heuristic based upon
firing the production with the most recent instantia-
tion [15] can be employed. However, it is important to
note that any total ordering of instantiations for a giv-
en rule will work. Adding additional criteria for in-
stantiations of different rules, such as rule priority,
can also be accommodated in a straightforward man-
ner. The second requirement prevents simple cycles
and creation of duplicate facts. In OPS5 these re-
quirements are met by the conflict set resolution



strategy — LEX or MEA [16]. Since both are quite
similar only LEX is described further.

3.1 LEX Conflict Set Resolution

The LEX strategy orders instantiations by successive-
1¥1 comparing the recency of all data elements within
them. Each instantiation is ordered by timestamp
and pairs of elements from each are compared. This
continues until it finds a data element in one that is
more recent than the data element in the other. It
then prefers the instantiation containing the more re-
cent element. If one instantiation is exhausted be-
fore the other without finding a more recent element,
then the one not exhausted is preferred. If both are
exhausted at the same time, then the specificity of
their corresponding LHSs is compared. The one con-
taining more tests for constants and variables is pre-
ferred. If no single instantiation dominates at this

point then an arbitrary selection is made from -

among the preferred instantiations.
3.2 Conflict Set Resolution in Lazy Matching

The challenge of the lazy matching algorithm is in
controlling a best-first search for instantiations
through a database that may change after each in-
stantiation is found and fired. The criteria for “best”
in this case is based upon the conflict set resolution
strategies.

Lazy matching uses the selection strategy as an eval-
uating function to direct the search for a firable in-
stance. This is done by using that criteria to direct
the search for matching tuples from the alpha-rela-
tions of the database which correspond to the alpha-
memories in RETE and TREAT. On any given cycle,
the search for an instantiation will stop after the first
one is found, with the search being conducted so as
to preserve recency. Of course, additions to, and de-
letions from, the cci'atabase will affect the search, and
we must ensure that a given instantiation is fired at
most once. To do so, state information of some form
must be saved from cycle to cycle in order to continue
the correct computation of instantiations.

3.3 Computing Instantiations Using Lazy
Matching

The concept of a dominant tuple (DT) is introduced to
control the lazy computation of instantiations. Each
tuple will be selected from the database as a DT
exactly once. To enforce this requirement, the
relational mapping described earlier is augmented
with a boolean attribute (S) to indicate whether or not
a tuple has been selected as a DT. All tuples are
initially set with S=0. The DT is that tuple not
already marked as ‘"selected" @.e., S=0) and
containing the most recent timestamp (.e., the
maximum ts). Figure 4(a) shows the initial database
for the following query. Note that the ID in this
example is a timestamp denoted ts.

(P Example
Ry "A<x>)

Ry AA<x> "Bcy>)
(R, AB<y>)
---> actions...)
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Alpha-Relations

Ry (ts,S,A) R; (ts,S,A,B) R, (ts,S,B)
1,0,a 2,0,a,c 4,0,c
3,0,b 5,0,a,d 6,0,c

7,0,b,c

(@)

Ro(ts,S,A) R; (ts,S,A,B) Ry (ts,S,B)
1,0,a 2,0,a,c 4,0,c
3,0/bfee | 5,0,a,d | _ 6,0,c

Po 7,1,b,¢ P,
Pl"
(®)

Rq(ts,S,A) Ry (ts,S,A,B) Rp(ts,S,B)
1,0,a 2,0,a,c 4,0,c
3,0,b 5,0,a,d % 6,0,c

Py 7,1,b,c
Pl"
©)

Rg(ts,S,A) Ry (ts,S,A,B) Rp(ts,S,B)
1,0,a <P———— 2,0,a,c 4,0,c
3,0,b| Fo 5,0,a,d] F1 6.1

7;%;b;c P;
@

Ro(ts,S,A) Ry (ts,S,A,B) Rz(ts,S,B)

O T P e 20
P s 0 5:1ra:d *1 6,1, €
2,1,0,¢ F2

()

Figure 4. Computing Instantiations

The computation of an instantiation begins with se-
lecting the DT, and marking it as selected; i.e., S:=1.
This is followed by a best-first search for an instantia-
tion containing DT. To ensure that instantiations
are produced only once, relations have a fixed order-
ing (by timestamp in this example), and the best-first
search computation restricts the tuples joining wi

DT to those having timestamps less than that of the
dominant tuple. As soon as a matching set of tuples
(i.e., an instantiation) for DT is found, the computa-
tion pauses and the result is fired. If an instantia-
tion containing DT cannot be found, then a new DT is
chosen, marked as selected, and a new best-first
search is begun. If all DTs are exhausted without
finding an instantiation, then the system halts. Fig-
ure 4(b) shows the initial state of the best-first search
pointers (P;). In this example, the best-first search
is rooted at ts=7 in relation R; and proceeds outward

in join order, most recent to least recent tuple in
each relation. The timestamps are used as logical
pointers for the search. The state of any searc is
represented as a tuple of timestamps — one from
each relation. Thus, for Fig. 4(b) the search state is
«3,7,6». These tuples satisfy the query and thus be-
come the first instantiation. Next, the rule is fired,
and, assuming for now that no tuples are added to or
removed from the database by firing the rule, the
search resumes to find the next instantiation. Fig-
ure 4(c) shows the state of the search after finding
the next instantiation — «3,7,4». Before finding
«3,7,4» the search would have tried «1,7,6», failed,
backtracked, advanced the P, pointer, and succeeded
(we arbitrarily chose to search the left relation first).
The next time the search is performed «1,7,4» will be



tried and will fail. That will exhaust the search root-
ed at the DT with ts=7. At that time a new DT must
be chosen. In this case it is the tuple with ts=6. The
shaded area in Fig. 4(d) contains tuples that have
timestamps greater than that of the DT and therefore
are not considered in the search. The next instantia-
tion to be found is «1,2,6», after unsuccessfully trying
«3,5,6», «1,5,6», and «3,2,6». After that, the tuple
with ts=4 is chosen as DT and «1,2,4» is found (Fig.
4(e)) after trying «3,54», «1,54», and «3,2,4».
«d,2,4» is the final instantiation that can be pro-
duced. After it is fired all DT searches will have
been exhausted and no new instantiations can be
found. Thus, the system halts.

We now consider the effects of adding and deleting tu-
ples after each rule firing. To do so we introduce a
stack: Each element on the stack represents the
state of a suspended best-first search. When a new
tuple is added to the database the current search is
suspended and its state pushed onto the stack. That
search will be resumed at a later time when its DT is
again the most recent. Since deletions may affect the
state of a suspended search by removing tuples that
have pointers to them on the stack, each time a
search state is popped from the stack, its pointers
must be verified by the best-first search. If the DT
has been deleted then its search is exhausted and a
new DT chosen. If any other tuple has been deleted,
the search backtracks to find the next instantiation.
If none is found then again the search is exhausted.

Figure 5(a) is the same as Fig. 4(b) except that a
stack has been added. Assume that the instantiation
referenced by «3,7,6» fires and adds the tuple <8,0,d>
to Ry. This causes

(1) the search state «3,7,6» to be pushed to the stack,

(2) <8,0,d> to be chosen as the DT (thus changed to
<8,1,d>), and

(3) the next instantiation to be found, i.e., «1,5,8»
(Fig. 5 (b)).

Alpha-Relations

R (ts,S,A Ry (ts,S,A,B) Ry (ts,S,B) STACK
——
1,0,a 2,0,a,c 4,0,¢c
3,0,b 5,0,a,d 6,0,¢c
Py > 7,1,b,c Py
21
(a)

Rq (ts,S,A) Ry (ts,S,A,B) Ry (ts,S,B) STACK
1,0,a 2,0,a,c 4,0,c |«3,7,6»
3,0,b| Py 50,a,dfe | 6,0,c

7,1,b,c|Py  5{8,1,d
Py
(b)

Ro{ts,S,A) R, (ts,S,A,B) Ry (ts,S,B) STACK
1,0,a 2,0,a,¢ 4,0,c
3,0,b S,O,a,d/,: 6,0,c

Pg 7.1,b,c 8,1,d
Py

©
Figure 5. Dynamic Search Space

Assume that firing «1,5,8» does not change the data-
base. On the next cycle the search rooted at ts=8 will
be exhausted and the top of stack DT, 7, will be com-
pared to the most recent database tuple that has S=0;

6 in this case. Since the stack tuple is more recent,
its search will be resumed. The next instantiation
found will be «3,7,4». The pseudocode for Lazy
Match in Fig. 6 should help elucidate the algorithm.
There are pathological cases where the best-first
search strategy will not produce the identical se-
quence of instantiations as OPS5; nevertheless the
criteria used in lazy matching is in keeping with the
general concept of recencK as presented by McDer-
mott and Forgy [15], and has not posed a problem in
two large systems.

This discussion has considered the generation of an
instantiation by the best-first search as a computa-
tion involving a single rule. The algorithm can be ex-
tended to multiple rule systems in several ways. The
most interesting approach is to execute the algo-
rithm independently for each rule and form a limit-
ed conflict set with at most one instantiation from
each rule. Then use any combination of rule priori-
ty, recency, and/or specificity to select the instantia-
tion to be fired. This also introduces rule-level
parallelism that can be exploited on parallel proces-
sors.

3.4 Handling Negated Condition Elements

We have discovered three different methods of lazily
handling negated condition elements (NCEs). Only
one will be described here. The methods for dealing
with NCEs are closely related to the method devel-
oped for the TREAT match algorithm [11). If a
search for an instantiation consistently binds with a
tuple that matches an NCE, then the search fails at
that point and must backtrack. We say that tuple
blocked the search. When a blocking tuple is re-
moved from the system, some instantiations may be-
come unblocked and allowed to compete for firing.
Those instantiations that become unblocked are
those that would have been computed had the condi-
tion element been positive instead of negative, and
had t(lixe tuple been added to the system instead of re-
moved.

To handle NCEs, for each negated condition, C;, add
a second alpha-relation which will shadow the first.
Rename the original alpha-relation from R; to R;. R;,
as before, contains the tuples that match the con-
stants in C;. Call the shadow alpha-relation Rﬁ
When a tuple that has blocked a search is removed
from an R; alpha-relation it is inserted into Rfand is
given the next available timestamp. The timestamps
of the tuples in RP participate in the DB_DT.ts func-
tion. The newly added tuples to Ry can then be al-

lowed to root a Dbest-first search for those
instantiations that they had blocked.

A problem arises when a search leads to an instanti-
ation that has already been derived from a tuple in

R;s. This is solved by requiring best_first_search to
examine R;S. A search that starts with a DT time-
stamp ts; and binds consistently with a tuple in R;g
with timestamp tsg>ts; fails. The idea is that once a
tuple enters R§ only it may generate instantiations
with older tuples. Such a tuple will be able to root the




program LAZY MATCH;

Ry,-...Ry.;: relation; {Alpha-relations corresponding
to the working memory.}

Py,...,P,,.;: timestamp; {(Pointers to tuples in the R; —
they are manipulated by the best-first search rou-
tine and constitute a reference to an instantiation
if one is found.}

stack: stack of n-tuples of pointers; {Stack elements
are «Py,...,Py._1», from suspended (superseded)
best-first search computations.}

DT.ts: timestamp; {The timestamp of the dominant
tuple that roots a best-first search.}

DT.SI: l;oolean; {The selected bit for the dominant tu-
ple.

function DB_DT.ts return timestamp; {Function
that returns the timestamp of the most recent tu-
ple in the database that has not already been
marked as selected, i.e., S=0. If no such times-
tamp can be found then the resultis 0.}

function stack_DT.ts return timestamp; {Function
that returns the maximum timestamp of the
pointers, Py,...,Pp_;, on the top of stack. If the
stack is empty result is 0.}

procedure push(Py,...,P,,.;: in timestamp);
{Procedure that pushes the best-first search point-
ers, Py,...,P,_1, onto the stack.}

procedure pop(Py,...,P,_;: out timestamp);
{Procedure that pops pointers, Py,...,P,_1, off of
the stack.}

procedure best_first_search(Py,...,P,.;: in out
timestamp; found: out boolean); (Procedure that

gerforms a best-first search for an instantiation
eginning at Py,...,P,,_;, and returns a new

Py,...,P,.1. Before starting the search, the point-

ers are checked to ensure that the tuples they
point to have note been deleted. If no instantiation
is found using the DT.ts in the input Py,...,P,_;,

then found=false. The search does not consider
any tuples with a ts>DT.ts. The search is rooted
at the tut%le referenced by DT.ts. It branches out-
ward to the other relations as specified by the join
order for the rule. Each relation is processed in
timestamp order, with most recent first. If a rela-
tion is searched and no matching tuple is found,
the search backtracks to the previous relation. If
it backtracks to the root, i.e., the relation contain-
ing DT.ts, then the search is said to be exhausted
for that DT.ts and the procedure returns with
found=false.}

procedure fire(Py,...,P,_;: in timestamp);

{Procedure that fires the instantiation referenced
by the pointers, Py,...,P,.7.}

begin

initialize R;; {ordered by timestamp and S=false}

initialize Pj; {V i, Pj:=0}

initialize stack; {to empty}

DT.ts:= 0;

loop
{Find out if the database contains the domi-
nant tuple. This will be true if there were any
additions on the previous cycle, or if the cur-

rent DT search was exhausted and the next
most recent tuple is in the database.}

if (DB_DT.ts>DT.ts ) AND
(DB_DT.ts>stack_DT.ts) then
if DT.ts#0 then push(Py,...,P,.1); end if;

DT.ts:= DB_DT.ts;

DT.S:= true;

v i, Pj:= DT.ts; {this sets the initial starting
point for any new best-first search. Best-
first search will return the first set of
valid pointers reached from this point by
backtracking.}

elsif stack_DT.ts>DT.ts then

(If DT does not come from the database,
find out if the stack has the most recent
DT.ts. This will only be true if the current
DT.ts=0 and the stack is not empty.}

DT.ts:=stack_DT.ts;
pop(Py,....Pn.1);
end if;
{we now have the timestamp of the dominant

tuple and can proceed to find an instantiation,
or stop if DT.ts=0}

exit when DT.ts=0;
best_first_search(Py,...,P,_;,found);
if found then
fire(Py....,Pp-1);
else
DT.ts:=0;
end if;
end loop;
end.

Figure 6. Lazy Match Pseudocode

search for all instantiations older than itself, wheth-
er they were blocked or not.

3.5 Algorithmic Complexity
A tuple can not exist in both an R; relation and it’s
shadow, Rg at the same time. Shadow relations may

be implemented by augmenting the R; relations with

an additional boolean attribute representing if a tu-
ple has been deleted. So implemented, the worst-
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case time complexity of Lazy Match is O(mC), the
same as for RETE and TREAT.

To determine the space complexity of Lazy Match for
p rules, consider that each tuple can appear as a
dominant tuple at most once. Thus, the size of the
stack is bounded by the size of the database, as is the
size of each alpha-relation. For each rule there is a
maximum of ¢ condition elements. The worst-case
space complexity of Lazy Match is O(p*n*c).

We anticipate that overall speed of the algorithm will
exceed TREAT, even in main-memory systems. For



a given program the searches executed by Lazy
Match are a subset of the searches executed by
TREAT, and, except for some overhead, those search-
es are performed by executing precisely the same se-
quence of instructions. In comparison to the total
execution time of the system the additional overhead
will not be significant.

Since Lazy Match must maintain a stack of suspend-
ed computations it is possible that it will require
more space than the TREAT algorithm. This will
more likely be true for programs with small maxi-
mum conflict set size. However, the amount of space
riequired for Lazy Match will be consistent cycle to cy-
cle.

4.0 An Architecture to Support
Lazy Matching

The Lazy Match algorithm provides a stable basis to
build on, but does not fully address performance is-
sues. Parallelism appears to be one worthwhile ap-
proach to dealing with the computational
requirements of these systems [6,11,12]. A parallel
architecture to support I/O intensive applications
(ak.a., the KYKLOS Database Engine) is being inves-
tigated as to its suitability for both relational databas-
es and the system described in this paper [17,18].
The architecture lends itself to parallel access of da-
tabases, and to parallel operations on data objects. It
is being emulated on the Symult 2010 parallel proces-
sor computer. The current configuration contains 24
processors and eight disk drives which can be access-
ed in parallel. Database algorithms tailored to this
environment are being developed. The key is to dis-
tribute the database over the eight 1/O nodes such
that the majority of disk accesses can be made con-
currently.

Our approach is to not only process the production
rules concurrently (rule-level parallelism), but to
take advantage of the high degree of data-level para-
llelism available in a database environment. The
copy-and-constrain technique [19] is an example of
an attempt to exploit data-level parallelism. Our ap-
proach is similar except that we segment the data-
base instead of adding patterns. Each IO node
contains only a portion of the database. A copy of all
rules resides at each I/O node and is allowed to
match on data available at that node. This work is
immature, but the prospects are encouraging.

5.0 Current Research

Current work is focusing on the definition of an ap-
propriate language and compiler for database orient-
ed production systems, an analysis of the trade-offs
involved in using rule-level parallelism, and an im-
plementation of the system on the Symult 2010 para-
llel computer. The compiler may include an
analysis stage that determines whether a rule
should be evaluated lazily or eagerly [20). The effect
of the eager evaluation will be to produce set oriented
operations which can be efficiently computed on the
Symult machine. The trade-off analysis in specify-
ing the details of the Lazy Match algorithm will be
done through the analysis of several applications. To
help understand the effect of WM size on perfor-
mance, the test applications are being scaled up in
the number of WMEs.
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Also under development is a disk-based implementa-
tion of an OPS5 compiler. The basis for this work 1is
the Jupiter file management system being developed
at The University of Texas at Austin. Jupiter and its
higher level companion, Genesis, allow one to build
reconfigurable DBMSs using a “building block” ap-
proach [21). By exploiting this technology, we have
the capability to rapidly perform many experiments
on the construction of active database systems.

6.0 Conclusion

Before the effective integration of production systems
and large databases can be achieved, the exponential
worst-case space complexity of the match algorithms
currently in use must be dealt with. The space us-
age of these algorithms is directly attributable to
their “eager” nature; i.e., they require that all instan-
tiations be enumerated before one is_chosen to fire.
We have described a “lazy” match algorithm which
has a linear worst-case space complexity. We believe
this result to be a necessary foundation upon which
to build viable database oriented production systems.
Moreover, by only producing instantiations as they
are needed, the Lazy Match has been shown to prune
approximately 60% of the search space on sample ap-
plications. We are working toward a parallel imple-
mentation of an active database system based on the
KYKLOS Database Engine architecture. The goal is
to take maximum advantage of both rule-level and
data-level parallelism in a stable environment.
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